Experiment 22: GC of gasolines

- **SYNOPSIS** Tetraethylead will be determined in a mixture of alkanes. <u>This form of lead is</u> <u>particularly toxic. All experiments should be carefully vented.</u> The doped tetraethyllead can be separated from the other components by gas chromatography using a packed column and a flame photometric detector.
- **READING** 331 in Critical Review. Attached is an article detailing GC to separate tetralkyl compounds for subsequent analysis.

Instrument

Shimadzu GC-8A1F gas chromatograph

Operating Conditions

Glass column 5 mm o.d., 2.6 mm i.d., 5.4 m long, OV-101 stationary phase	
Column Temperature 50 °C	
Injection Temperature 120 °C	
FID detector at 400 °C	
3 µL injection	
N ₂ carrier gas at 60 mL/min	Pressuge 0.6 bp/cm ²
H ₂ fuel gas at 50 mL/min	1.9
Air oxidant gas at 500 mL/min	1.2

ignition: H_2 at 0.9 pb/cm² Air at 0.1 to 0.2 bp/cm²

Programmed Temperatures

50 °C initial + 10°C/min up to no more than 200 °C

Reagents and Solutions

 CS_2 as a matrix or carrier for the alkanes and tetraethyllead. Heptane Hexane Octane Tetraethyllead CAUTION: this latter should be handled only with the hood due to its toxcity.

Mixtures:

5 mL CS₂ 5 mL CS₂ + 10 μ L heptane 5 mL CS₂ + 10 μ L hexane 5 mL CS₂ + 10 μ L octane 5 mL CS₂ + 10 μ L tetraethyllead 5 mL CS₂ + 5 μ L tetraethyllead 5 mL CS₂ + 2 μ L tetraethyllead 5 mL CS₂ + 10 μ L heptane + 10 μ L hexane + 10 μ L octane + 10 μ L tetraethyllead

Experiment

Obtain a GC separately for each solutions.

<u>Report</u> In addition to materials and methods:

- 1. Tabulate the retention times of the individual species, of their peak width, and their resolution from their nearest neighbors.
- 2. Plot the log adjusted retention time of the alkanes against their carbon number. Is the plot linear? Does the slope change when you changed flow rate or temperature?
- 3. Using the plot in 2 calculate the apparent carbon number of tetraethyllead, assuming that temperature has remained constant. (If you do a temperature programming you can not do this.)
- 4. Is there a discernable trend in the peak widths for the species with retention time?
- 5. What is the effect of varying the flow rate or temperature on the retention times and on the peak widths.
- 6. What is the resolution of heptane and hexane? Is it reasonable? What is meant by reasonable resolution?
- 7. Calculate H for your column. What is the *meaning* of H?
- 8. How does the definition for resolution in chromatography related to definitions we use for LOD and LOQ in population statistics?
- 9. Was the temperature of the column maintained constant during the analysis of the tetraethyllead + alkane mixture? Why or why not?
- 10. Why are you instructed not to take the temperature of the column any higher than 200 °C?
- 11. Show a calibration plot for tetraethyllead. What is the LOD?
- 12. What controls the LOD in the FID detector? That is, what is the background signal likely to be due to?
- 13. How does your LOD compare to that obtained by Lobinski (0.1 pg/mL)? The density of tetraethyllead is 1.653 g/mL.
- 14. Why is tetraethyllead so toxic? How does the mechanism of toxicity to humans relate to the mechanism by which it is found in wines?