

$\begin{array}{c} \begin{array}{c} 121.51 & 696.28 & 1875.09 \\ 190.54 & 466.13 & 1975.09 \\ 97.23 & 41405 & 1975.09 \\ 94.75 & 917.01 & 1995.09 \\ 91.05 & 917.01 & 1995.01 \\ \end{array}$ Only discrete, quantized, $(\mathbf{n=unit \ values}) \ of \ energy$
Only discrete, quantized, (n=unit values) of energy
u=unit values) of energy
are allowed for electrons.
This accounts for lines as opposed
To range of energy
$E = \frac{-R_H}{n^2} \bigg _{n=1,2,3,\dots,n}$

The fly in the ointment Indicates there is a problem

The "fly in the ointment" of Bohr's successful model of the Hydrogen model is that it does Not account for any other element!

The reason is that the electron Does not really occupy a specific Orbital around the nucleus. It Has a "probability" of being in that Space that is high, but with some Probability of not being in that space.

Louis de Broglie (1892-1987)
French Mathematical physicist
Proposed wave like properties of particles
Relate the kinetic energy of
The motion of the electron

$$E_k = \frac{1}{2}mv^2$$
 $E = hv = \frac{hc}{\lambda}$
 $mv^2 = \frac{hv}{\lambda}$
 $\lambda = \frac{hv}{mv^2}$ Remember c is velocity of light
 $\lambda = \frac{hv}{mv^2}$ λ Characteristic wavelength of a mass
 h Planck's constant
 $h = 6.626x10^{-34} J \cdot s$
 $\lambda = \frac{h}{mv}$ v velocity

Principal n	Azimuthal $\ell = 0.1.2(n-1)$	Magnetic $m_{\ell} = \ell_{\ell} + 1.0 - 1 \ell_{\ell}$	Spin $m_{\rm s} = +\frac{1}{2}; -\frac{1}{2}$	Total Allowed e
1	$\ell = 0$ $\ell_0 = s$	$m_{\ell=0} = 0$	$m_s = +\frac{1}{2}; -\frac{1}{2}$	2x1
2	$\ell = 0, 1$ $\ell_0 = s$	$m_{\ell=0} = 0$	$m_s = +\frac{1}{2}; -\frac{1}{2}$	2x1
	$\ell_1 = p$	$m_{\ell=1} = +1, 0, -1.$	$m_s = +\frac{1}{2}; -\frac{1}{2}$	$\frac{2 \times 3}{8}$
3	$\ell = 0, 1, 2$ $\ell_0 = s$ $\ell_1 = p$ $\ell_2 = d$	$m_{t=2} = 2, 1, 0, -1, -2$	$m_{s} = +\frac{1}{2}; -\frac{1}{2}$ $m_{s} = +\frac{1}{2}; -\frac{1}{2}$ $m_{s} = +\frac{1}{2}; -\frac{1}{2}$	$2x1$ $2x3$ $\frac{2x5}{18}$
distance	Orbital shape	Orientation in space	Electron spin	

Property	Unit	Reference State	
Size	m	size of earth	
Volume	cm ³	m	
Weight	gram	mass of 1 cm ³ water at specified Temp (and Pressure)	
Temperature	°C, K	boiling, freezing of water (specified Pressure)	
1.66053873x10 ⁻²⁴ g	amu	(mass of 1C-12 atom)/12	
quantity mole	atomi	c mass of an element in grams	
Pressure	atm, mm Hg	earth's atmosphere at sea level	
		$P = \frac{F}{A} = \frac{ma}{A} = \frac{\frac{kg \cdot i}{s^2}}{m^2}$	
Energy, General			
electro Electro	onic states in atconegativity	om Energy of electron in vacuum F	

4. Ability to lose electrons (ionization potentials)

"A" students work (without solutions manual) ~ 10 problems/night.

Flanner Hall 402

Office Hours W - F 2-3 pm

Calcium uptake is controlled by Vitamin D and growth regulators parathyroid hormone (PTH)

(without solutions manual)