

"A" students work (without solutions manual) ~ 10 problems/night.

Flanner Hall 402

Office Hours W - F 2-3 pm

Gas Phase Reactions		
Will need to define some New measurement systems	Ideal Gas Law Stoichiometry of Gaseous Reactions Partial Pressures and Mole Fractions Kinetic Theory of Gases Real Gases	

		FITCH Rules			_
	G1: Suzu	ki is Success	_		
al	G2. Slow me down				
mera	G3. Scientific Knowledge is Referential				
Ŭ	G4. Watc	h out for Red I	Herrings		
	G5. Chemists are Lazy				
	C1. It's al	about charge			
stry	C2. Every	body wants to	"be like N	1ike"	
lemi	C3. Size I	Matters	$E_{i} = k$	$\underline{q_1q_2}$	
Ð	C4. Still V	Vaters Run De	ep	$r_1 + r_2$)	
	C5. Alpha	Dogs eat first	AT DOUG	14	
		and a	TRSIT	I. POUG!	101
				E A	

Properties and Measurements		
Property	Ûnit	Reference State
Size	m	size of earth
Volume	cm ³	m
Weight	gram	mass of 1 cm ³ water at specified Temp
		(and Pressure)
Temperature	°C, K	boiling, freezing of water (specified Pressur
1.66053873x10 ⁻²⁴ g	amu	mass of 1C12 atom/12
6.022x10 ²³	mole	atomic mass of an element in grams
		Why specify "at sea Level?"
		Because it relates to a standard Pressure
		()

1

Properties and Measurements				
Property	Ûnit	Reference State		
Size	m	size of earth		
Volume	cm ³	m		
Weight	gram	mass of 1 cm ³ water at specified Temp		
Temperature	°C, K	(and Pressure) boiling, freezing of water (specified Pressur		
1.66053873x10 ⁻²⁴ g	amu	mass of 1C12 atom/12		
6.022x10 ²³	mole	atomic mass of an element in grams		
Pressure	mm Hg, bar, atm	sea level		
Pressure force/unit area like psi (pounds per square inch) used in inflating our tires				
$P = \frac{F}{A}$				

Properties and Measurements		
Property	Unit	Reference State
Size	m	size of earth
Volume	cm ³	m
Weight	gram	mass of 1 cm ³ water at specified Temp (and Pressure)
Temperature	°C, K	boiling, freezing of water (specified Pressur
1.66053873x10 ⁻²⁴ g	amu	mass of 1C12 atom/12
6.022x10 ²³	mole	atomic mass of an element in grams
Pressure	mm Hg, bar, atm	sea level
		€

Electric cars were thought to be a dead end in the early 1990s because they were based on the lead acid battery. The weight of these batteries would preclude their serious use, unlike that of the hydrogen based fuel cell. One way that automotive engineers account for this is by the energy density: energy per kg weight of the fuel system. If a hydrogen fuel Lilor cell based car fuel source is a 50.0 Ni-Zn L container of H_2 at NLF 225 bar, what Ni-metal hydride additional kg weight would this give to the Ni-Cad car at 25 °C?

120

€Ę

100

Wh/kg

Lead acid closed

Example: My son is paranoid about lead and refuses to tour the old lead mines at Galena, Ill for fear that he will breath in galena gas vapors. He assumes that the following reaction will produce sufficient vapor to poison him:

 $PbS_{(s)} \longrightarrow PbS_{(g)}$

The reaction produces a vapor pressure of PbS of 1.131x10⁻²¹torr at room temperature (~25°C). The OSHA (Office of Safety and Health Administration) sets a limit of breathable lead at 50microgPb/m³. Is my son paranoid or simply appropriately cautious?

 $1.131x10^{-21} torrPbS_{(g)}$ $\frac{50\mu gPb}{m^3} = \lim it$

48

What mass of niter is required to produce 2.00 Liters of oxygen at
25.0C and 1.00 atm? Old fashioned word for potassium nitrate

$$6KNO_{3(s)} + 2H_2O_{(g)} \rightarrow \frac{3}{2}O_{2(g)} + 3K_2O_{(s)} + 4HNO_{3(l)} + 2NO_{(g)}$$

$$PV = nRT$$

$$n = \frac{PV}{RT}$$
Know everything necessary

$$n = \frac{[1.00atm][2L]}{[0.0821\frac{L \cdot atm}{mol \cdot K}]}[25 + 273]K} = 8.174 \times 10^{-2} molO_2$$

$$[8.174 \times 10^{-2} molO_2] \left[\frac{6molKNO_3}{\frac{3}{2} molO_2}\right] \left[\frac{39.10 + 14.01 + 3(16.00)gKNO_3}{molKNO_3}\right]$$

$$[8.174 \times 10^{-2} molO_2] \left[\frac{4molKNO_3}{molO_2}\right] \left[\frac{101.1gKNO_3}{molKNO_3}\right] = 33.055gKNO_3$$

Another related concept:
Mole fraction,
$$X_A$$

 $P_{Tot} = P_A + P_B$
 $\frac{P_A}{P_{Tot}} = \frac{n_A}{n_{tot}}$
 $\frac{P_A}{P_{Tot}} = \frac{\frac{n_A RT}{V}}{\frac{n_{tot} RT}{V}}$
 $\frac{P_A}{P_{Tot}} = \chi_A$
 $\frac{P_A}{P_{Tot}} = \chi_A$
 $P_A = \chi_A P_{tot}$

$$rate effusion_{A} = \frac{moles}{time} \propto P_{A}u_{rms,A} \propto \left(\frac{m}{s}\right)$$

$$\frac{rate effusion_{A}}{rate effusion_{B}} \propto \frac{u_{rms,A}}{u_{rms,B}}$$
If you compare the rate of effusion for two gases each with the same partial pressure
$$\frac{rate effusion_{A}}{rate effusion_{B}} = \frac{u_{rms,A}}{u_{rms,B}} = \sqrt{\frac{3RT}{\sqrt{\frac{3RT}{MM_{A}}}}} = \sqrt{\frac{1}{\frac{MM_{B}}{\sqrt{\frac{1}{MM_{A}}}}} = \sqrt{\frac{MM_{B}}{MM_{A}}}$$

 $\frac{rate\,effusion_A}{rate\,effusion_B} = \sqrt{\frac{MM_B}{MM_A}}$

