

Particle	Symbol	Mass	Amu			
Neutron, n Proton, p Electron, e	$\begin{matrix} {}^1_0 n\\ {}^1_1 H\\ {}^0_{-1} e \end{matrix}$	g 1.674923 1.672623 1.093893	85x10 ⁻²⁴ 1.00867 31x10 ⁻²⁴ 1.00728 8x10 ⁻²⁸ 0.00055			
These numbers are Invoke General R Chemist's Are La Create some unit (These numbers are inconvenient Invoke General Rule #5: Chemist's Are Lazy Create some unit (not g) that is more useful (atomic mass unit)					
Invoke General Rule #3 There must be some reference state $1amu = \frac{1.9926x10^{-26} g}{12}$						
$1amu = 1.66053873x10^{-24} g$						

Properties and Measurements				
Property	Unit	Reference State		
Size	m	size of earth		
Volume	cm ³	m		
Weight	gram	mass of 1 cm ³ water at specified Temp (and Pressure)		
Temperature	°C, K	boiling, freezing of water (specified Pressun		
1.66053873x10 ⁻²⁴ g	amu	mass of 1C12 atom/12		
Expressi convenie	ng masses ent	s in terms of amu is more		

	% Abundance	Relative atomic mass (amu)
$^{204}_{82}Pb$	1.36	203.973
$^{206}_{82}Pb$	25.4	205.9745
$^{207}_{82}Pb$	21.1	206.9759
$\frac{208}{82}Pb$	52.1	207.9766
	0/ 41 1	Relative
	% Abundance	atomic masses (amu
${}^{12}_{6}C$	<u>% Abundance</u> 98.89	12.0000
$^{12}_{6}C$ $^{13}_{6}C$	% Abundance 98.89 1.11	12.0000 13.00335

Exan	nple				
	Element H C O Pb	<u>Amu</u> 1.008 12.01 16.00 207.2	<u>Mass (g)</u> 1.008 24.02 48.00 207.2	<u>Moles (n)</u> 1 2 3 1	<pre># atoms 6.022x10²³ 12.044x10²³ 18.066x10²³ 6.022x10²³</pre>

Properties and Measurements				
Property	Unit	Reference State		
Size	m	size of earth		
Volume	cm ³	m		
Weight	gram	mass of 1 cm ³ water at specified Temp (and Pressure)		
Temperature	°C, K	boiling, freezing of water (specified Pressur		
1.66053873x10 ⁻²⁴ g	amu	mass of 1C12 atom/12		
6.022x10 ²³	mole	atomic mass of an element in grams		

Simplest Formula from Chemical Analysis (Empirical)

- 1. Mass scale is based on atomic number of C
- 2. Mass scale is therefore proportional to number of atoms or moles 3 Convert mass to moles = whole units of atoms

NOT ALLOWED by chemistry (remember we chemists do not break up atoms - that is reserved for physicists)

5. So multiply until we get whole number ratios

fractional

Example : The compound that gives fermented grape juice, malt
liquor, and vodka their intoxicating properties is ethyl alcohol, which
contains the elements carbon, hydrogen, and oxygen.
When a sample of ethyl alcohol is burned in air, it is found that

5.00 g ethyl alcohol goes to 9.55 g CO_2 plus 5.87g H_2O

What is the simplest formula of ethyl alcohol?

Fermented grape juice 5.00g ethyl alcohol malt liquor 9.55 g CO₂ 5.87 g H₂O vodka intoxicating properties simplest formula? ethyl alcohol burned in air elements C, H, O

Example : A 25.00-g sample of an orange compound contains 6.64 g of potassium, 8.84 g of chromium, and 9.52 g of oxygen. Find the simplest formula					
0.170molK 0.170molCr 0.595mol O (Empirical) 7 O : 2K : 2Cr Formula: Cations First					
$\frac{0.170molCr}{0.170molCr} = \frac{1.00molCr}{1molCr} \qquad \frac{2.00molCr}{2molCr} \qquad 2\mathbf{K} : 2\mathbf{Cr} : 7 \mathbf{O}$					
$\frac{0.170molCr}{0.170molCr} = \frac{100molR}{1molCr}$ $0.595molO$ $350molO$	2.00molK 2molCr 7.00molO	$K_2Cr_2O_7$			
$\overline{0.170molCr} = \overline{1molCr}$ $\overline{2molCr}$ Make this non-fractional, multiply x2					

Example : The compound that gives fermented grape juice, malt liquor, and vodka their intoxicating properties is ethyl alcohol, which contains the elements carbon, hydrogen, and oxygen. When a sample of ethyl alcohol is burned in air, it is found that 5.00 g ethyl alcohol goes to 9.55 g CO_2 plus 5.87g H ₂ O What is the simplest formula of ethyl alcohol?			
5.00g ethyl alcoholAll the C and H in the sample is converted9.55 g CO2In air (contains O2) to CO2 and H2O5.87 g H2Oso g C in CO2 represents g C in originalelements C H OAnd g H in H2O represents g H original			
Burned in air $5g_{total(C+H+O)} \xrightarrow{O_2} 9.55gCO_2 + 5.87gH_2O$			

	Steps to Balance Reaction Equations
1.	Write a "skeleton" equation with molecular formulas of
	reactants on left, products on right
2	Indicate the physical state of the reactants and products
	a. (g) for a gas
	b. (1) for a liquid
	c. (s) for a solid
	d. (aq) for an ion or molecule in water (aqueous) solution
3.	Chose an element that appears in only one molecular formula
	on each side of the equation
4.	Balance the equation for mass of that element
	a. placing coefficients in front of the molecular formula
	NOT by changing subscripts in the molecular formula
5.	Continue for the other elements
6.	The best answer is the one which is simplest whole-number coefficients

$$3PbS_{(s)} + 5O_{2(g)} \rightarrow Pb_{3}O_{4(s)} + 3SO_{2(g)}$$
Determine:
a) The mass in grams of SO₂ formed when 1.34 mol of O₂ reacts
b) The mass in grams of O₂ required to form 1kg of Pb₃O₄
Alternative string strategy

$$x = \left(1kg_{Pb_{3}O_{4}}\right) \left[\frac{10^{3}g}{kg}\right] \left[\frac{mol_{Pb_{3}O_{4}}}{g_{Pb_{3}O_{4}}}\right] \left[\frac{5mol_{O_{2}}}{mol_{Pb_{3}O_{4}}}\right] \left[\frac{g_{O_{2}}}{mol_{O_{2}}}\right]$$

$$x = \left(1kg_{Pb_{3}O_{4}}\right) \left[\frac{10^{3}g}{kg}\right] \left[\frac{mol_{Pb_{3}O_{4}}}{685.6g_{Pb_{3}O_{4}}}\right] \left[\frac{5mol_{O_{2}}}{mol_{Pb_{3}O_{4}}}\right] \left[\frac{32.00g_{O_{2}}}{mol_{O_{2}}}\right]$$

$$x = 233.37g$$

Rules for Limiting Reagent

- 1. Calculate the amount of product that would be formed if the first reactant were completely consumed
- 2. Repeat for the second reactant
- 3. Choose the smaller of the two amounts. This it the theoretical yield of the product.
- 4. The reactant that produces the smaller amount of the product is the limiting reagent.
- 5. The other reagent is in excess, only part of it is consumed.

Limiting Reagents Liebig's Law of the Limiting (1810-1820 Germany) I have 1 dozen eggs, 2 packages of chocolate chips, and An entire carton of flour, an entire carton of sugar, a new bottle Of vanilla, and a new box of baking powder. The chocolate chip recipe calls for 2 eggs, 3 cups flour, 1 cup Sugar, 1 package chocolate chips, 1 tbsp vanilla, and 2 Tbsp baking powder. The recipe results in 36 Chocolate chip cookies. a. What is the <u>limiting reagent</u>?

$1 pkgchips + 2 eggs + 3 cflour + 1 csugar + 1 tbspvanilla + 2 tbsppowder \longrightarrow 36 cookies$					
Chips 1pkg Eggs 2	2pkg → 12 eggs	$\frac{?}{2pkg} = \frac{36cookies}{1pkg}$	$? = 2pkg \left[\frac{36cookies}{1pkg} \right] = 72cookies$		
Flour 3c Sugar 1c	>3cups >1cup	$\frac{?}{12eggs} = \frac{36cookies}{2eggs}$	$? = 12eggs \left[\frac{36cookies}{2eggs} \right] = 192cooki$		
vanilla 1tbsp Powder 2tbsp Yield 36 cookies	>1tbsp >2tbsp Yield??	Smallest yield Limiting reage	= 72 cookies nt = chips		

