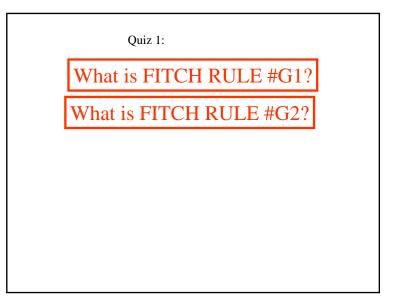
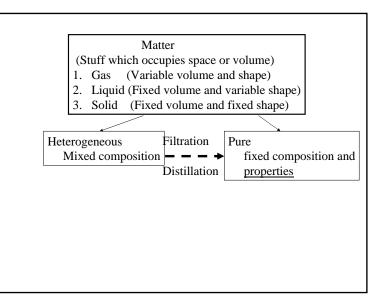
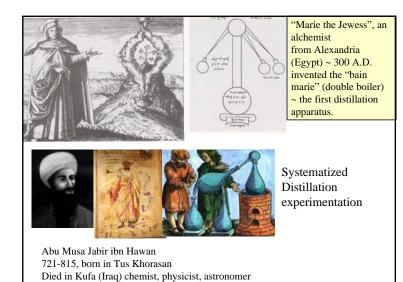
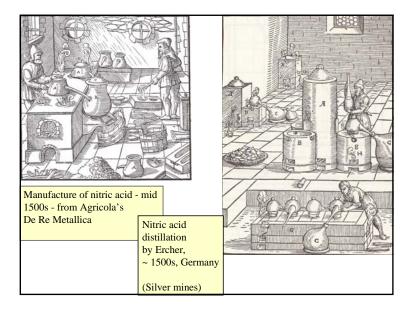

1: Suzuki is Success

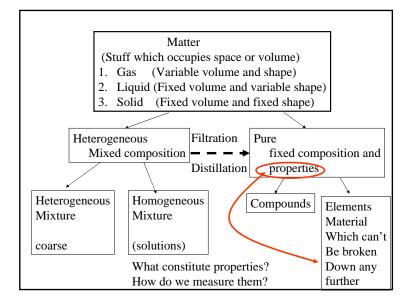

Suzuki Method of Music Learning

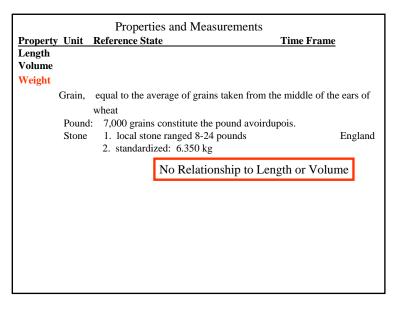

- 1. Break skills into small parts (fingering pattern; bow crossings; rhythmic clapping)
- 2. Work on one small skill until it can be accomplished 10 (TEN) times correctly in a row
- 3. String together small skills into a larger set of tasks
- 4. Practice concert piece with other students (discussion section; study group)
- 5. Perform the concert piece.

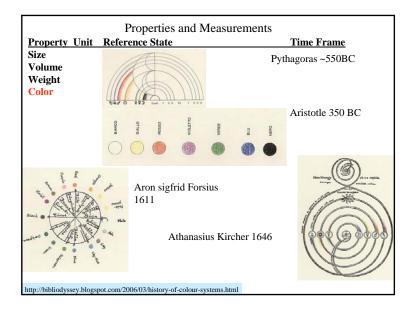


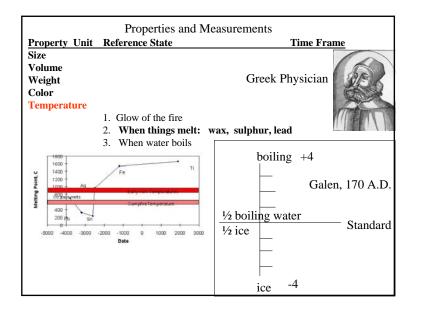
	" students do every night 10-11 problems successfully
1	Buy a notebook just for problems
2	Assume <u>all</u> problems at back of book are relevant, unless otherwise informed.
3	Select problems for which answer is available.
4	Work in notebook for 10 minutes maximum per problem.
5	If unsuccessful circle and move on.
6	Repeat until you have found 10 problems successful OR until 2 hours are spent in gnashing of teeth.
7	Go to Blackboard Discussion site and post problem that gave you the most trouble night before class.
8	At least one problem will be worked as a chalk board problem in lecture.
9	Remainder of circled problems brought to discussion or office hours.

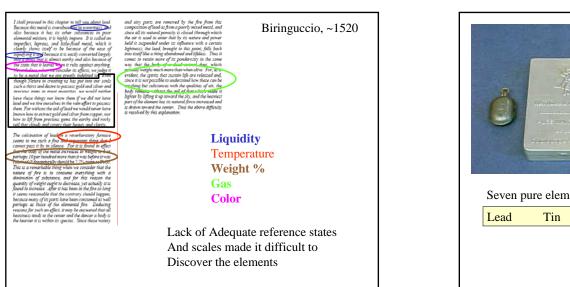




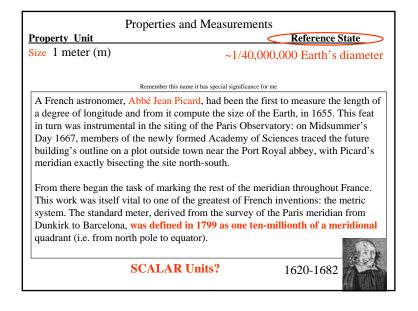

Under house arrest 803-815



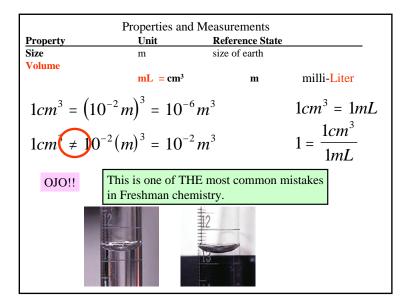

		Properties and Measure	ments
Property	y Unit	Reference State	Time Frame
Length			
	inch	1.man's thumb width	England, before 1300
		2. three grains of barley end to en	d England, after 1300
	foot	average man's foot size	
	yard	 average man's belt length 	England, before 1100
		2. length from nose to fingertips of	of King Henry England 1200
	rod	a stick long enough to reach from	plow to oxen nose tip
	furlon	length of furrow typically 40 ro	ds
	hand	unit of measure of a horse from he	oof to shoulder
	mile	1000 double strides of Roman leg	ion
Volume		Gallon - 8 pounds of wheat	
		Peck – two dry gallons	
		Bushel – 4 pecks	No solotion shin to low oth
		10 (wine) gallons = 1 anker	No relationship to length
		18 gallons = 1 rundlet	measurements
		31.5 gallons = 1 barrel	
		42 gallons = 1 tierce	
		63 gallons = 1 hogshead 2 tierces = 1 puncheon or 84 gallons	
		$1 \frac{1}{2}$ puncheons = 1 butt or pipe (or 126 g	allons)
		2 pipes = 1 tun or 252 gallons	

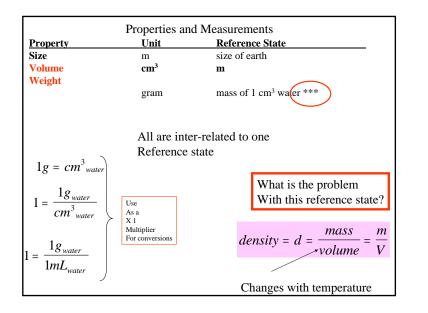


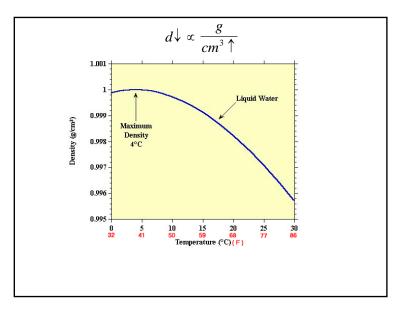
What Can We Say/Discover About Matter Using Grains Width of Man's Thumb Aristotelian colors Galen's Temperature Scale

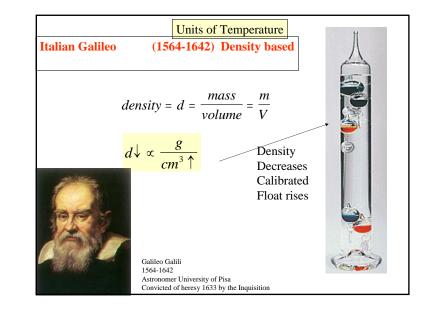

Seven pure elements known by the time of the Romans

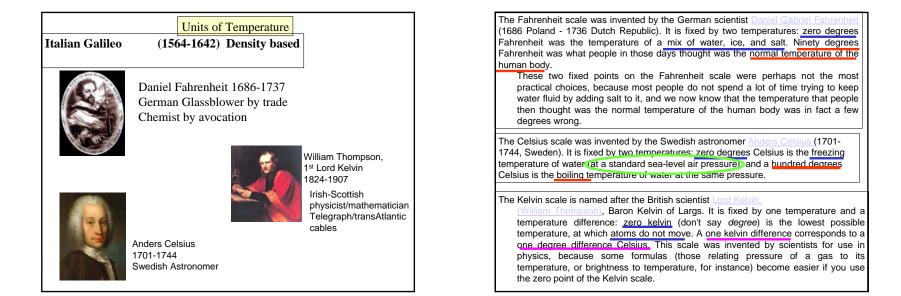
Lead	Tin	Copper	Mercury	"Iron"	Silver	Gold	
------	-----	--------	---------	--------	--------	------	--

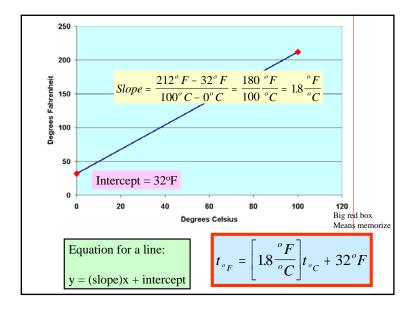

Sulfur	S	Sulphurium	B.C.
Silver	Ag	Argentium	~3000 B.C.
Copper	Cu	Cuprum (from the Island of Cyprus)	~3000 B.C.
Gold	Au	Aurum (shining dawn)	~3000 B.C.
Lead	Pb	Plumbus	~3000 B.C.
Iron	Fe	Ferrum	B.C.
Tin	Sn	Stannum	B.C.
Mercury	Hg	Hydrargyrum (liquid silver)	Romans
Antimony	Sb	Anti monos (not single)	1600s
Tungsten	W	Tung sten (Swedish - heavy stone)	Scheele 1781
Potassium	Κ	Potash (pot ashes), kalium (alkali)	Davy, 1807
Sodium	Na	Natrium	Davy, 1807
	8	Elements known to Romans	
	12	Pure elements known by early 1800	s
	112	Elements by 1995	
Eleven element	ts here are	the only ones whose symbols do not follow the	heir names

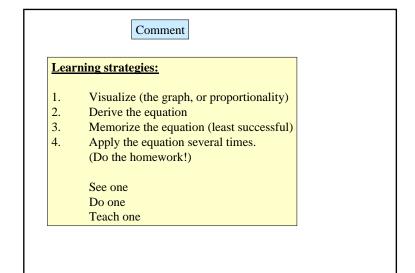

		FITCH Rules		
	G1: Suzu	ki is Success		
al	G2. Slow	me down		
General	G3. Scier	ntific Knowled	lge is Refe	erential
Ŭ	G4. Watc	h out for Red H	lerrings	
	G5. Che	emists are Laz	У	
	C1. It's al	about charge		
stry	C2. Every	body wants to	"be like M	ike" (grp.18)
Chemistry	C3. Size I	Matters		
G	C4. Still V	Vaters Run De	ер	
	C5. Alpha	Dogs eat first	T DOUG	6 June 1
		HE ALL		E POUG! PINNER!
		14	AND AND A	Frida Land
		1 10		62

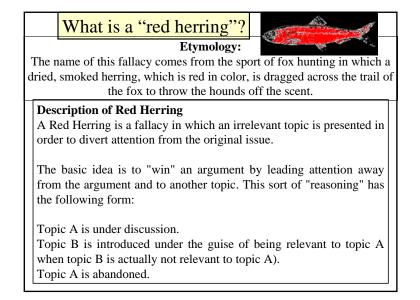

3. Scientific Knowledge is Referential
Scientific Knowledge is "Referential"
 Depends upon Measurement tools Tools are agreed upon and uniform Some STANDARD reference state Fineness of scale determines Certainty

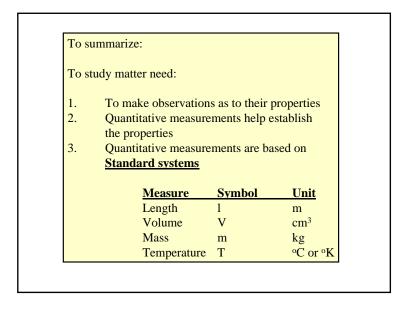

Scalar ur In 10s, o	nts ×	$(0^x)m$ = -n,3,-2,-1,	0, 1, 2, 3, <i>n</i>
Factor	Prefix	Abbreviation	$1cm = 10^{-2}m$
$ \begin{array}{c} 10^{12} \\ 10^{9} \\ 10^{6} \\ 10^{3} \\ 10^{-1} \\ 10^{-2} \\ 10^{-3} \\ 10^{-6} \\ 10^{-9} \\ 10^{-12} \\ 10^{-15} \\ 10^{-18} \\ \end{array} $	tera giga mega kilo deci centi milli micro nano pico femto atto	T G M k d c m μ n p f a	$1 = \frac{10^{-2}m}{cm}$ $1 = \frac{1cm}{10^{-2}m}$ $1 = \frac{100cm}{m}$ All are equivalent statements

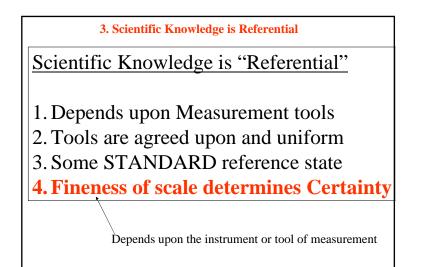


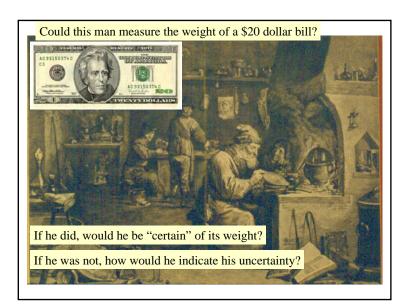


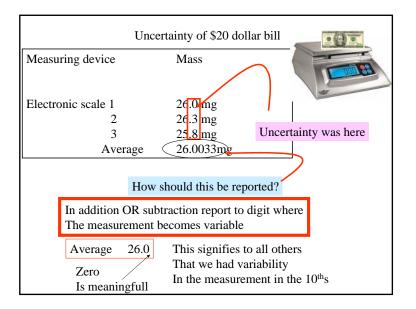

	Properties an	nd Measurements
Property	Ūnit	Reference State
Size	m	size of earth
Volume	cm ³	m
Weight	gram	mass of 1 cm ³ water at specified Temp
		(and Pressure)
Temperature		

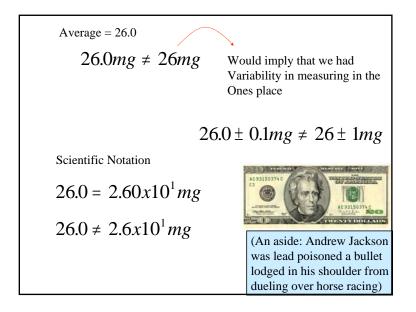

Un	its of '	Temper	ature	
Reference States	Galen	° <u>F</u>	٥C	<u>к</u>
Water Boiling Point, sea level	+4	212ºF	100°C	373.15K
Presumed Human Temp		90°F		
¹ / ₂ boiling; ¹ / ₂ freezing water	0			
Water Freezing Point, sea leve	el -4	32ºF	00	C 273.15K
Mixture of Ice, Water, Salt		0ºF		
Cessation of atomic motion			-273.15%	C OK
	$\overline{T_K} =$	$t_{o_C} + 2$		ig red box leans memorize
To relate F	and C	scales,	let's plot th	ne data:

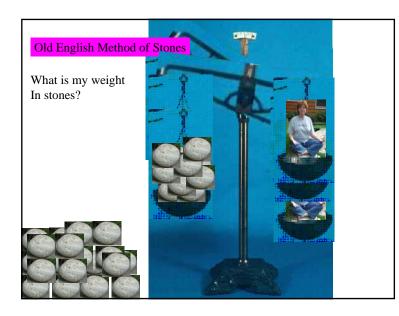

	Room temperature is about 25 °C or 78°F. All motion ceases at 0K. All motion ceases at what temperature Fahrenheit?
Strategy	y
1.	Convert words to symbols on left hand side of the paper.
2.	Mark the unnecessary information as red herrings.
3.	Random associate with any equations or relationships
	you can remember. Write those equations down on the
	left hand side of the paper.
	Check the equations symbols for various known and unknown symbols required.
	Choose equation which had unknown with most knowns.
6.	Solve.

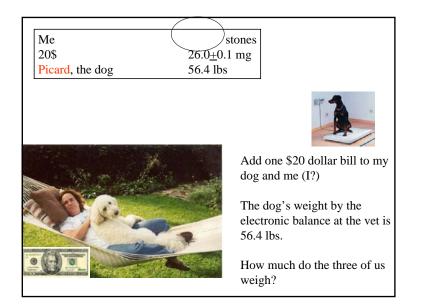

		FITCH Rules	
	G1: Suzu	ki is Success	
al	G2. Slow	me down	
General	G3. Scien	tific Knowledge	e is Referential
Ğ	G4. Watc	h out for Red	Herrings
	G5. Che	emists are Laz	у
	C1. It's all	about charge	
stry	C2. Every	body wants to	"be like Mike" (grp.18)
Chemistry	C3. Size I	Matters	-
Ch	C4. Still V	aters Run De	ер
	C5. Alpha	Dogs eat first	T DOUG
		L'és	
		had be	

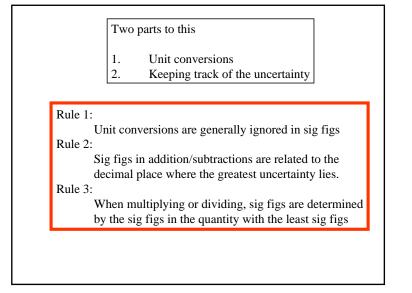

	Etymology:	No.
The name	of this fallacy comes from the sport of fox hunting in v	which a
dried, smok	ked herring, which is red in color, is dragged across the	e trail of
WH	IY DO YOU TORTURE US THIS WAY?	
		1
-	otion of Red Herring	
A Red I	Herring is a fallacy in which an irrelevant topic is	
prese O	ne current distinction between artificial intelligence an	nd
	uman intelligence is the ability to ignore extraneous	
	formation.	
"reas		
Topi W	Then a patient comes to you they will give you all kind	s of
Topi in	formation, not all of which is relevant.	
	(when topic B is actually not relevant to topic A).	
Topic A	A is abandoned.	
]

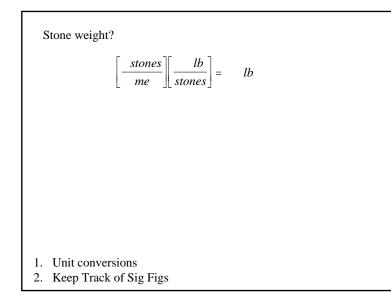

Strategy	Room temperature is about 25 °C or 78°F. All motion ceases at 0K. All motion ceases at what temperature Fahrenheit?			
 Convert words to symbols on left hand side of the paper. Mark the unnecessary information as <u>red herrings.</u> Random associate with any equations or relationships you can remember. Write those equations down on the left hand side of the paper. 				
$RT = 25^{\circ}C$ 4. Check the equations symbols for various known and unknown symbols required.				
RT ~ 78 Known = Unknow Motion ce	$= 0K \qquad T_{K} = t_{o_{C}} + 273.15 \qquad t_{o_{C}} = 0 - 273.15 = -273.15 \circ C$ $n = {}^{o}F \qquad t_{o_{C}} = \left[18 \frac{{}^{o}F}{{}^{o}C}\right] (-273.15 \circ C) + 32 \circ F$ $t_{o_{C}} = \left[18 \frac{{}^{o}F}{{}^{o}C}\right] (-273.15 \circ C) + 32 \circ F$ $t_{o_{C}} = -459.67 \circ F$			

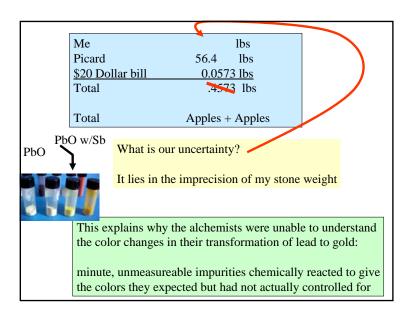


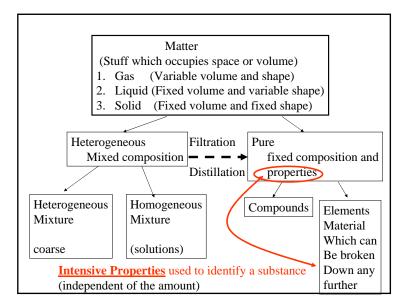


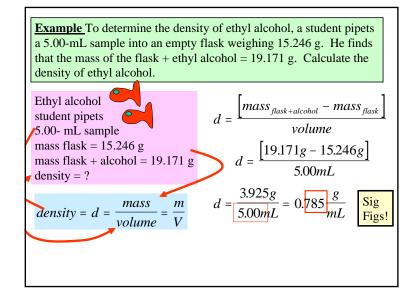

		FITCH Rules				
	G1: Suzu	ki is Success				
al	G2. Slow me down					
General	G3. Scientific Knowledge is Referential					
Ğ	G4. Watch out for Red Herrings					
	G5. Chemists are Lazy					
	C1. It's all about charge					
stry	C2. Everybody wants to "be like Mike" (grp.18)					
Chemistry	C3. Size I	Matters				
ت ا	C4. Still V	Vaters Run De	ер			
	C5. Alpha	Dogs eat first	IT DOUG			











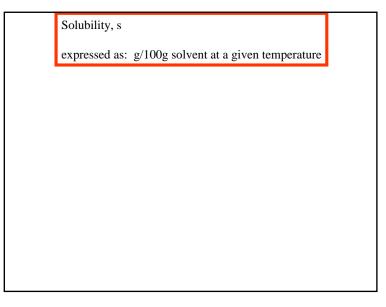
Property	Ûnit	Reference State	
Size	m	size of earth	
Volume	cm ³	m	
Mass	gram	mass of 1 cm ³ w	ater at specified Temp (and Pressure)
None!			
Which of above is an			
intensive property?		extensive properties	daman daman tha
Density		Size	depend upon the amount of
Solubility		Volume	
Solubility		Mass	substance present
What could we mea	asure th	nat would be an intensi	ve property?

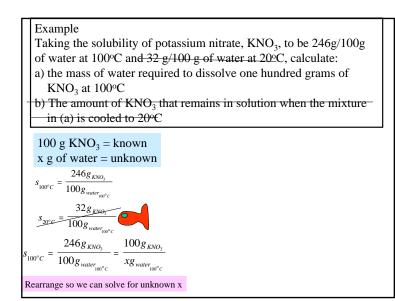
Example To determine the density of ethyl alcohol, a student pipets a 5.00-mL sample into an empty flask weighing 15.246 g. He finds that the mass of the flask + ethyl alcohol = 19.171 g. Calculate the density of ethyl alcohol.

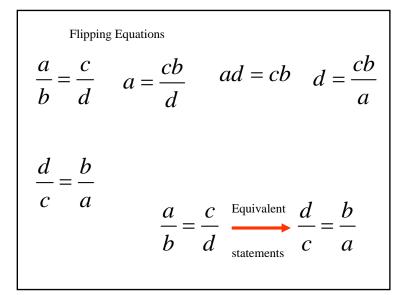
Strategy

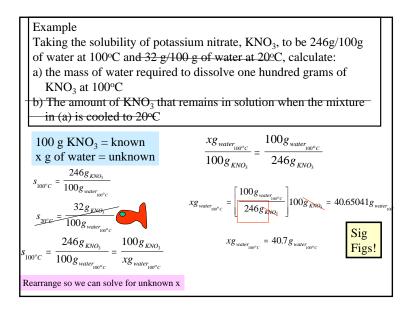
- 1. Convert words to symbols on left hand side of the paper.
- 2. Mark the unnecessary information as <u>red herrings.</u>
- 3. Random associate with any equations or relationships you can remember. Write those equations down on the left hand side of the paper.
- 4. Check the equations symbols for various known and unknown symbols required. Choose equation which had unknown with most knowns.
- 5. Solve.

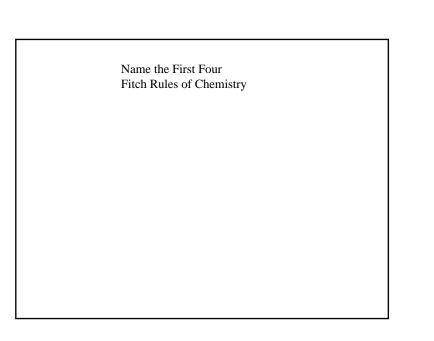
Context for Next Example

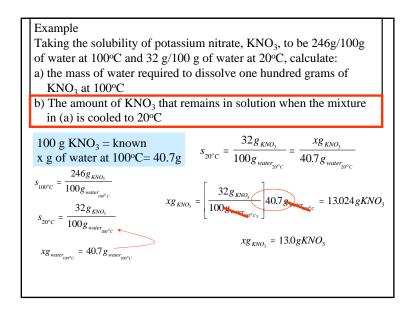

The first deforestation of the NE of America was during the colonial period when trees were felled to create an export commodity in a) shingles b) oak casks

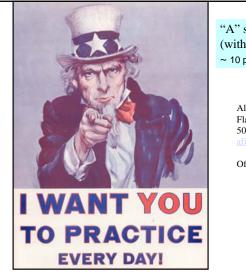

c) pot ash (remember? Potassium = pot ash, K)


Potassium is very soluble and moves through soils rapidly to ground water.


Trees roots access potassium from deeper in the soil Tree ashes contain concentrated amounts of potassium


Potassium nitrate was required to create gunpowder. Calcium nitrate can be obtained from pig urine passing through soil, but calcium nitrate adsorbs water and spoils the nitrate.





		FITCH Rules				
General	G1: Suzuki is Success G2. Slow me down G3. Scientific Knowledge is Referential					
Chemistry	G4. Watch out for Red Herrings G5. Chemists are Lazy C1. It's all about charge C2. Everybody wants to "be like Mike" (grp.18) C3. Size Matters					
C4. Still Waters Run Deep C5. Alpha Dogs eat first						

"A" students work (without solutions manual) ~ 10 problems/night.

> Alanah Fitch Flanner Hall 402 508-3119 afitch@luc.edu

Office Hours W - F 2-3 pm