

To determine if our protein unfolds or not is it sufficient to know the K_a and K_b Values of the functional groups?

$$HA_{aq} \stackrel{\rightarrow}{\leftarrow} H_3 O^+_{aq,from\ HA} + A^-_{aq}$$

% dissociation =
$$100 \left[\frac{amount\ dissociated\ (M)}{initial\ concentration\ (M)} \right]$$

% dissociation =
$$100 \left[\frac{A_{aq}^{-}}{HA_{aq,initial}} \right]$$

This seems pretty straight forward

$$HA_{aq} \stackrel{\rightarrow}{\leftarrow} H_3 O_{aq,from\ HA}^+ + A_{aq}^-$$

$$K_{a} = \frac{\left[A_{aq,eq}^{-}\right] \left[H_{3}O_{aq,eq}^{+}\right]}{\left[HA_{eq,aq}\right]}$$

 $K_a = \frac{\left[A_{aq,eq}^-\right]\left[H_3O_{aq,eq}^+\right]}{\left[HA_{eq,aq}\right]}$ AND a new vocabulary for comparing the **solution** acidity from experiment to experiment

> K_a and K_b tell us about the possibility Of donating protons, not what the solution Acidity is

Define another comparison number: pH

"A" students work (without solutions manual) ~ 10 problems/night.

> Dr. Alanah Fitch Flanner Hall 402 508-3119 afitch@luc.edu

Office Hours Th&F 2-3:30 pm

Module #17B: Acid Base Ionization Computations

pH, pOH, pKa

To shorten calculations use log

$$\log(ab) = \log(a) + \log(b)$$

$$\log\left(\frac{a}{b}\right) = \log(a) - \log(b) \quad p[x] = -\log[x]$$

$$\log(a)^x = x \log(a)$$

$$\log \frac{1}{\left(a^{x}\right)} = \log \left(a^{-x}\right) = -x \log(a)$$

$$K = \frac{\left[OH^{-}_{eq}\right]\left[H_{3}O^{+}_{eq}\right]}{\left[H_{2}O\right]^{2}}$$

Assumption that 55.5 molar is relative unchanged

$$K[H_2O]^2 = [OH_{eq}^-][H_3O_{eq}^+]$$

$$K[55.55]^2 = [OH_{eq}^-][H_3O_{eq}^+]$$

$$K[55.55]^2 = K_W = 10^{-14}$$

$$K_W = 10^{-14} = \left[OH_{eq}^- \right] H_3 O_{eq}^+$$

$K_W = 10^{-14} = \left[OH_{aq}^{-}\right] H_3 O_{aq}^{+}$
$\log K_W = \log(10^{-14}) = \log[OH_{aq}^-] + \log[H_3O_{aq}^+]$
$-14 = \log[OH_{aq}^-] + \log[H_3O_{aq}^+]$
$14 = -\log[OH_{aq}^-] + -\log[H_3O_{aq}^+]$
$p[x] = -\log[x]$
14 = pOH + pH
pH scale runs from 0 to 14 Which is more Acidic?

	acid/base	ave [H ⁺]	рН	рОН	ave [OH-]
base	blood	5.01x10 ⁻⁸	7.3	6.7	1.99x10 ⁻⁷
	saliva	$1x10^{-7}$	/		
acid		2.51x10 ⁻⁷ k 3.54x10 ⁻⁷ 7.94x10 ⁻⁶	Yo	ou do	the rest
pH ≡	$= -\log[5.01]$	$x10^{-8}$] = 7.3			$p[x] = -\log[x]$
7 so	omething	an 10 ⁻⁸ , so I kn	ow it is	ے ا	$4 = pH + pOH$ $x = 10^{-pX}$
14-7.3	• • • • • • • • • • • • • • • • • • • •	$] = 10^{-6.7} = 1.$	995 <i>x</i>		

"A" students work (without solutions manual) ~ 10 problems/night.

> Dr. Alanah Fitch Flanner Hall 402 508-3119 afitch@luc.edu

Office Hours Th&F 2-3:30 pm

Module #17B: Acid Base Ionization Computations

Calculating [A-]

This will require an equilibrium calculation

$$HA_{aq} \stackrel{\rightarrow}{\leftarrow} H_3 O^+_{aq,from\ HA} + A^-_{aq}$$

$$K_{a} = \frac{\left[A_{aq,eq}^{-}\right]\left[H_{3}O_{aq,eq}^{+}\right]}{\left[HA_{eq,aq}\right]}$$

Generalized Strategy involves comparing Kas

- 1. Write down ALL possible reactions involving a proton
- 2. Excluding water, identify all the proton donors as
 - 1. Strong acid
 - a. Strong electrolyte: HNO₃, HCl, H₂SO₄ (No Clean Socks)
 - b. Give all strong acid protons to water or alpha dog
 - c. Calculate hydronium conc.
 - d. Calculate pH
 - 2. Weak Acid
 - a. Identify strongest acid (omega dog, can not hold protons
 - b. Has largest $K_{a;}$ smallest charge density anion
 - c. Calculate how many protons omega gives up (equil)
 - d. Calculate pH
 - e. Use to determine what alpha gets

Example Calculations

1.HCI

2. Acetic acid (vinegar)

2.HF

3.B(OH)₃ (Boric acid (eye wash))

4. Mixture (HF and phenol)

5.Mixture (H₂SO₄, HSO₄-)

6.Triethylamine

7.NaAcetate

8. Our heme example

Calculate the pH of 0.004 M HCl

$$H_3 O_{aq}^+ = 0.004 M$$

Scientific notation allows you to quickly check if Your answer is in the right "ballpark"

$$pH = -\log(4x10^{-3})$$

 $pH = -\log(4) + -\log(10^{-3})$
 $pH = -\log(4) + -(-3)$
 $pH = -(0.602) + 3$ pH has to be slightly less Than 3
 $pH = 2.39$

Generalized Strategy involves comparing Kas

1. Write down ALL possible reactions involving a proton

$$HCl_{aq} \stackrel{\rightarrow}{\leftarrow} H^{+}_{aq} + Cl^{-}_{aq}$$

$$H_{2}O_{\ell} \stackrel{\rightarrow}{\leftarrow} H^{+}_{aq} + OH^{-}_{aq} \qquad K_{w} = 10^{-14}$$

2. Excluding water, identify all the proton donors as

1. Strong acid

a. Strong electrolyte: HNO, HCl H₂SO₄ (No Clean Socks)

 Cl_{aq}^- low $ch \arg e \ density$ Omega dog

b. Give all strong acid protons to water or alpha present

$$H_2O_\ell + HCl_{aq} \xrightarrow[complete\ reaction]{give\ all\ bone\ to\ water} H_3O_{aq}^+ + Cl_{aq}^-$$

c. Calculate hydronium conc. $H_3 O_{aa}^+ = 0.004 \, M$

d. Calculate pH

Example Calculations

1.HCI

2.Acetic acid (vinegar)

2.HF

3.B(OH)₃ (Boric acid (eye wash))

4. Mixture (HF and phenol)

5.Mixture (H₂SO₄, HSO₄-)

6.Triethylamine

7.NaAcetate

8. Our heme example

Example: What is the % ionization of commercial vinegar? The label reads 5% acidity (by weight). Vinegar is acetic acid which has the formula $HC_2H_3O_2$. (CH_3COOH) $K_a = 1.8 \times 10^{-5}$ Density of 5% acetic acid 1.0023 g/mL

1. Write down ALL possible reactions involving a proton

$$CH_3COOH_{aq} + H_2O_{\ell} \stackrel{\rightarrow}{\leftarrow} H_3O_{aq}^+ + CH_3COO_{aq}^-$$
 $K_a = 1.8x10^{-5}$

$$H_2 O_\ell \stackrel{\rightarrow}{\leftarrow} H_{aq}^+ + O H_{aq}^- \qquad K_w = 10^{-14}$$

- 2. Excluding water, identify all the proton donors as
 - 1. Strong acid
 - a. Strong electrolyte: HNO₃, HCl, H₂SO₄ (None)
 - 2. Weak Acid:

$$CH_3COOH_{aq} + H_2O_{\ell} \stackrel{\rightarrow}{\leftarrow} H_3O_{aq}^+ + CH_3COO_{aq}^- \qquad K_a = 1.8x10^{-5}$$

a. Calculate how many protons omega gives up (equil)

HC_2H_3O	_	ny complicate this situation by adding in 10 ⁻⁷ nen we get rid off it with an assumption?			
		ecause it creates a habit	necessary of multiple rx		
	H_2O	OH.	$\mathrm{H}^{\scriptscriptstyle +}$		
	55.5	10-7	10-7		
	$HC_2H_3O_2$	$C_2H_3O_2$	H +		
stoic	1	1	1		
conc. init	5%	0	10-7		
[Init]	0.8355	0	10-7		
Change	-X	+x	+x		
A ssume	0.8355>	>>x +x	$10^{-7} << x$		
[E quil]	0.8355	+ x	+ x		
g/mL. Vinegar is ac		$K_a = \frac{(x)(10^{-7} + x)}{[HA_{init}] - x}$	$1.8x10^{-5} = \frac{x^2}{0.8355}$		

Example: What is the % ionization of commercial vinegar? The label reads 5% acidity (by weight). Vinegar is acetic acid which has the formula $HC_2H_3O_2$. (CH_3COOH) $K_a=1.8x10^{-5}$ Density of 5% acetic acid 1.0023g/mL

Know Don't Know

% by wt. Need the initial molarity

	HA	A	H ⁺
Assume	0.8355 >> x	+ x	10-7 << x
()	2	$0.8355 - x \approx$	
$0.8355(K_a) =$	x^2	0.83550	0.003676
$\sqrt{0.8355(K_a)} =$	x	0.00387	
		0.83162	2
$x = \sqrt{(1.8x10^{-5})}$	(0.8355) = 0.00387	78	Original sig figs
Check: x + 10	5% error		were = 0.83 So if we round to
Check: $x + 10$	$0^{-1} \approx x$?		2 sig fig, have
0.0038780			Same answer
0.0000001	pH = (-1)[1c	og(0.0038778)]	= (-1)(-2.41) = 2.41
0.0039779			
↑ Sig f	$igs \left(\frac{0.0000001}{0.0039779}\right) 100 = 0.002$	%	

% dissociation =
$$100 \left[\frac{A_{eq}^{-}}{HA_{aq,initial}} \right]$$

$$\left(\frac{0.003878}{0.835} \right) 100 = 0.46\%$$

What is the % ionization of commercial vinegar? The label reads 5% acidity (by weight). Density of 5% acetic acid is 1.0023 g/mL. Vinegar is acetic acid which has the formula HC₂H₂O₅. (CH₂COOH) K_a = 1.8x10⁻⁵

$$K_a = \frac{\left[H^+\right]\left[A^-\right]}{\left[HA\right]}$$

Dilute by 10 (make less concentrated):

$$Q = \frac{\left(\frac{[H^+]}{10}\right)\left(\frac{[A^-]}{10}\right)}{\frac{[HA]}{10}} = \frac{[H^+][A^-]}{[HA]10} <,=,> K?$$

What does this tell us, if anything?

We have too many reactants, need to shift to the **right**, or dissociate some more.

general rule of thumb: dilution gives more dissociation.

How does % dissociation or ionization vary with concentration?

[Acetic Acid]	% ionization
1.00 M	0.42%
0.835M	0.46%
0.1 M	1.3% Observations?

% ionization increases with the lower molarity.

Why should this be so?

What is the % ionization of commercial vinegar? The label reads 5% acidity (by weight). Density of 5% acetic acid is 1.0023 g/mL. Vinegar is acetic acid which has the formula HC-H₂O₂, (CH₂COOH) K_x = 1.8x10⁻⁵

- 1.HCI
- 2. Acetic acid (vinegar)
- 3.HF
- 4.B(OH)₃ (Boric acid (eye wash)) (students Do this one yourself)
- 5.Mixture (HF and phenol)
- 6.Mixture (H₂SO₄, HSO₄⁻)
- 7. Triethylamine
- 8.NaAcetate
- 9. Our heme example

Calculate the F- of a solution of 1.00 M HF. $K_a = 7.2 \times 10^{-4}$

1. Write down ALL possible reactions involving a proton

$$HF_{aq} \stackrel{\rightarrow}{\leftarrow} H^{+}_{aq,F} + F^{-}_{aq}$$
 $K_{a} = 7.2 \times 10^{-4}$

$$H_2O_\ell \stackrel{\rightarrow}{\leftarrow} H_{aq}^+ + OH_{aq}^- \qquad K_w = 10^{-14}$$

2. Excluding water, identify all the proton donors as

- - 1. Strong acid
 - a. Strong electrolyte: HNO₃, HCl, H₂SO₄ (No Clean Socks)

- 2. Weak Acid
 - a. Identify strongest acid (omega dog, can not hold protons)
 - b. Has largest K_a smallest charge density anion

$$HF_{aq} \stackrel{?}{\sim} H_{aq,F}^+ + F_{aq}^- \qquad K_a = 7.2x10^{-4}$$

c. Calculate how many protons omega gives up (equil)

	H ₂ O	H+	OH-
	55.5	10 ⁻⁷	10 ⁻⁷
	HF _(aq)	H ⁺ _{from HF}	F-
stoic.	1	1	1
I nit	1.0	10 -7	0
Change	-X	+x	+x
Assum	1>>x	$10^{-7} << x$	
E quil	1	X	X

	HF _(aq)	H ⁺ from HI	F F-
Init	1.0	10-7	0
Change	-X	+ x	+ x
Assum	1>>x	$10^{-7} << x$	
E quil	1	X	X
$F_a = \frac{(x)(x+10^{-7})}{1-x}$	$\approx \frac{x^2}{}$	Check assu	ımptio
	$ \begin{array}{c} 1 \\ 17x10^{-2} & \approx \end{array} $, 5% error ≈ 2.7
$1(K_a) = x^2$	1.00	0.0)27
$x = 2.7x10^{-2}$	<u>- 0.027</u>	<u>+ 0.</u>	000000
	0.983	0.0	27000
		· /	
lculate the pH of a solution	of 1.00 M HF.	Sig fig is here	
$_{1} = 7.2 \times 10^{-4}$		983 = 1 0.027	0001 =

	$\mathbf{HF}_{(\mathbf{aq})}$	H ⁺ from HI	F F -
Init	1.0	10-7	0
Change	-X	+ x	+ x
Assum	1>>x	$10^{-7} << x$	
E quil	1	\mathbf{x}	X
	2. / AIU		
$x = [F^-] = 2$			
		10 ⁻²)]= (-1)(-1.	568) = 1.
		10 ⁻²)]= (-1)(-1	568) = 1.
		$[10^{-2}] = (-1)(-1.5)$	568) = 1

Example: Boric acid is commonly used in eyewash solutions to neutralize bases splashed in the eye. It acts as a monoprotic acid, but the dissociation reaction looks different. Calculate the pH of a 0.75 M solution of boric acid, and the concentration of $B(OH)_{A}$.

$$B(OH)_{3,aq} + H_2O_{\ell} \stackrel{\rightarrow}{\leftarrow} B(OH)_{4,aq}^- + H_3O_{aq}^+$$
 $K_a = 5.8x10^{-10}$

1. Write down ALL possible reactions involving a proton

$$B(OH)_{3,aq} + H_2O_{\ell} \stackrel{\rightarrow}{\leftarrow} B(OH)_{4,aq}^{-} + H_3O_{aq}^{+} \qquad K_a = 5.8x10^{-10}$$

$$H_2O_{\ell} \stackrel{\rightarrow}{\leftarrow} H_{aq}^{+} + OH_{aq}^{-} \qquad K_w = 10^{-14}$$

- 2. Identify proton donors
 - 1. strong acids: No Clean Socks?
 - 2. Weak acids:

B(OH)₃ Students do This on your own

	$B(OH)_3 + H_2O$	B(OH)	4" + H+				
[I nit]	0.75	0	10 -7				
Change	-X	+ x	+ x				
Assume	0.75>>x	X	$10^{-7} << x$				
E quil	0.75	X	X				
5% eri	$\mathbf{r} = (\mathbf{H}^{-1} - \mathbf{J})(\mathbf{r})$						
$x + 10^{-8} \approx 0.000021$	pH = (-1)	$\log(2.1x10^{-1})$	5) = 4.68 = 4.7				
+ 0.000000	<u>)1</u>		Students do				
0.000021	Cia fia	$H_{03} + H_{2}O = B(OH)_{4}^{-1}$ of a 0.75 M solution of					

	Set up I0	CAE chart			Students do	
					This on your ov	vn
		H ₂ O		OH-	H+	
		55.5		10 ⁻⁷	10 ⁻⁷	
		$B(OH)_3$	+ H ₂ O=	B(OH)	$0_4^- + H^+$	
	stoic	1	n.a.	1	1	
	[I nit]	0.75		0	10 -7	
	Change	-X		+x	+x	
	Assume	0.75 >> x		X	$10^{-7} << x$	
	E quil	0.75		X	X	
	x(x+10)	y^{-7} x^2	$\sqrt{(5.8)}$	$x10^{-10}$)0.	$\frac{1}{75} = x = 2.1x10$) ⁻⁵
K	$f_a = \frac{1}{[HA]}$	$\frac{D^{-7}}{-x} \approx \frac{x^2}{\left[HA_{in}\right]}$.]	, , ,		
	Linit]	2 L-11 in	ut]			
5	$8x10^{-10} = \frac{3}{2}$	<u>. </u>	R(OH)	+ H,O B(OH)	$K_a = 5.8 \times 10^{-10}$	
	0.	.75	Calculate the pH of a			

- 1.HCI
- 2. Acetic acid (vinegar)
- 3.HF
- 4.B(OH)₃ (Boric acid (eye wash)) (students Do this one yourself)
- 5.Mixture (HF and phenol)
- 6.Mixture (H₂SO₄, HSO₄⁻)
- 7. Triethylamine
- 8.NaAcetate
- 9. Our heme example

Mixtures of Acids Calculate the pH of a solution that contains 1.0 M HF and 1.0 M HOC₆ H₅. Calculate the conc. of -OC₆ H₅ at this concentration.

1. Write down ALL possible reactions involving a proton

$$HF_{aq} \stackrel{>}{\sim} H_{aq,F}^{+} + F_{aq}^{-}$$
 $K_{a} = 7.2 \times 10^{-4}$
 $C_{6}H_{5}OH_{\ell} \stackrel{>}{\sim} H_{aq}^{+} + C_{6}H_{5}O_{aq}^{-}$ $K_{a} = 1.8 \times 10^{-5}$
 $H_{2}O_{\ell} \stackrel{>}{\sim} H_{aq}^{+} + OH_{aq}^{-}$ $K_{w} = 10^{-14}$

- 2. Excluding water, identify all the proton donors as
 - 1. Strong acid NONE 2. Weak Acid

Identify strongest acid (omega dog, can not hold protons) Has largest Ka; smallest charge density anion Calculate how many protons omega gives up (equil) Calculate pH (Use to determine what alpha gets)

	HF +	H_2O	ightharpoons	F -+	\mathbf{H}^{+}
stoic	1	n.a.		1	1
[I nit]	1.0			0	10 -7
Change	-X			+x	+x
Assume	1.0 >> x			X	$10^{-7} << x$
E quil	1.0			X	X
$\sqrt{(7.2x10^{-4})} = x = 2.7x10^{-2}$ Check assumptions: $2.7x10^{-2} + 10^{-7} \approx 2.7x10^{-2}$?					
$-2.7x10^{-2}$	1? 1.0			+ 0.00000	<u>)1</u>
	<u>- 0.027</u>	<u> </u>		0.027000	1
Si	0.983 fig = 1		;	Sig fig	= 0.027

			oncentration, bu		
Sno	bula include	H ₂ O	ources to remin	OH-	H+
		55.5		10 ⁻⁷	10 ⁻⁷
┞		HF +	H,0 =	F- +	H+
	stoic	1	n.a.	1	1
	[Init]	1.0	11,000	0	10-7
I '	Change	-X		+ x	+ x
	Assume	1.0 >> x		X	10 ⁻⁷ < <x< td=""></x<>
]	E quil	1.0		X	X
,,	$x(x+10^{-7})$	x^2	$7.2x10^{-4} = \frac{x^2}{1}$		
K _a	$=\frac{x(x+10^{-7})}{[HA_{init}]-x}$	$\approx \overline{\left[HA_{init}\right]}$	$7.2x10 = {1}$	(7.210	$\left(-\frac{1}{4}\right) = x = 2.7x10^{-2}$
			-	$\sqrt{(7.2x10)}$	$j = x = 2.7 \times 10$
HF HOC		I+ + F- I+ + -OC ₆ H ₅	$K_a = 7.2x10^{-4}$ $K_a = 1.8x10^{-5}$		a solution that contains 1.0 M ₅ H ₅ . Calculate the conc.

HF + H₂O
$$\rightarrow$$
 F + H+

 stoic
 1
 n.a.
 1
 1

 [Init]
 1.0
 0
 10-7

 Change -x
 +x
 +x
 +x

 Assume
 1.0>>x
 x
 x

 Equil
 1.0
 x
 x

 1.0
 2.7x10⁻²
 2.7x10⁻²

Calculate the pH of a solution that contains 1.0 M

HF and 1.0 M HOC, H, Calculate the conc. of -OC, H, at this concentration.

HF +	H_2O	ightharpoons	F -+	H +
1	n.a.		1	1
1.0			0	10 ⁻⁷
-X			+x	+ x
1.0 >> x			X	$10^{-7} << x$
1.0			2.7x	10 ⁻² 2.7x10 ⁻²
C ₆ H ₅ OH	H+ H ₂ O	ightharpoonup	C ₆ H	5O- + H+
1	n.a.		1	1 ,
1.0			0	2.7x10 ⁻²
-X			+x	+ x
1.0 >> x			X	$x < < 2.7 \times 10^{-2}$
1.0			X	2.7x10 ⁻²
	1 1.0 -x 1.0>>x 1.0>>x 1.0 C ₆ H ₅ OH 1 1.0 -x 1.0>>x	1 n.a. 1.0 -x 1.0>>x 1.0 $C_6H_5OH + H_2O$ 1 n.a. 1.0 -x 1.0>>x	1 n.a. 1.0 -x 1.0>>x 1.0 $C_6H_5OH + H_2O \rightleftharpoons$ 1 n.a. 1.0 -x 1.0>>x	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Exam	ole	Calcu	lations
LAGIII	$\mathbf{p}_{\mathbf{i}}\mathbf{p}_{\mathbf{i}}$	Calca	ialions

- 1.HCI
- 2. Acetic acid (vinegar)
- 3.HF
- 4.B(OH)₃ (Boric acid (eye wash)) (students Do this one yourself)
- 5. Mixture (HF and phenol)

6.Mixture (H₂SO₄, HSO₄⁻)

- 7. Triethylamine
- 8.NaAcetate
- 9. Our heme example

	C ₆ H ₅ OH+	$-H_2O =$	C_6	$H_5O^- + H^+$
stoic	1	n.a.	1	1
[I nit]	1.0		0	2.7x10 ⁻²
Change	-X		+ x	+ x
Assume	1.0 >> x		X	x<<2.7x10 ⁻²
E quil	1.0		X	2.7x10 ⁻²
$C_6H_5OH + I$	$H_2O_\ell \stackrel{\rightarrow}{\leftarrow} H_3O_{aq}^+$	$+ C_6 H_5 O_{aq}^-$		$K_a = 1.8x10^{-5}$
	$\frac{\left[H_3 O_{aq,eq}^{+}\right] \left[C_6 H_5\right]}{\left[C_6 H_5 O H_{eq}\right]}$ $\frac{\left(2.7x10^{-2} + x\right)x}{1-x}$		2.7 <i>x</i> 10	$\begin{array}{c} (1)^{-2} + x \stackrel{5\%error}{\approx} [2.7x10^{-2}]? \\ 100 \left(\frac{6.66x10^{-4}}{2.7x10^{-2}} \right) = 2.46\% \\ 100 \left(\frac{6.66x10^{-4}}{2.7x10^{-2}} \right) = 6.66x10^{-4} \end{array}$
$x = \frac{1.8x10^{-5}}{\left[2.7x10^{-2}\right]}$	$= 6.66 \times 10^{-4}$		HF and 1	the pH of a solution that contains 1.0 M $_6$ M $_6$ H $_6$ Calculate the conc. $_6$ At this concentration.

Example: calculate the pH of 0.0010 M sulfuric acid

1. Write down ALL possible reactions involving a proton

$$\begin{split} H_2 SO_{4,aq} + H_2 O_{\leftarrow}^{\rightarrow} HSO_{4aq,F}^{-} + H_3 O_{aq}^{+} & K_a = l \arg e \\ HSO_{4,aq}^{-} + H_2 O_{\ell}^{\rightarrow} \stackrel{\rightarrow}{\leftarrow} H_3 O_{aq}^{+} + SO_{4,aq}^{2-} & K_a = 1.2x 10^{-2} \\ H_2 O_{\ell} \stackrel{\rightarrow}{\leftarrow} H_{aq}^{+} + OH_{aq}^{-} & K_w = 10^{-14} \\ \end{split}$$
 2. Excluding water, identify all the proton donors as

- - 1. Strong acid
 - a. Strong electrolyte: HNO₃, HCl, H₂SO₄ (No Clean Socks)

$$H_2SO_{4,aq} + H_2O \stackrel{\rightarrow}{\leftarrow} HSO_{4aq,F}^- + H_3O_{aq}^+$$
 $K_a = l \arg e$

b. Give all strong acid protons to water or alpha dog

1	Pure Water	H ₂ O	OH.	H ⁺	
I		55 . 5	10 -7	10 -7	
	Control/complete	H_2SO_4	HSO ₄ -	\mathbf{H}^{+}	
	stoic.	1	1	1	
2	[init]	.0010	0	10 -7	
	complete	0	0.0010	0.001	0+10 ⁻⁷
		0	0.0010	0.001	
	stoic.		HSO ₄ -	\mathbf{H}^{+}	SO_4^{2-}
3			1	1	1
_	[Init]		0.0010	0.0010	0
	Change		-X	+ x	+ x
	Assume?		0.0010 > x	0.0010>	x + x
	[E quil]		0.0010	0.0010	X
$K_{a2} =$	$ \frac{ \left[H_3 O_{aq,eq}^+ \right] S O_{4,aq,eq}^{2-} }{ \left[HS O_{4,aq,eq}^- \right] } $		$e^{-2} = \frac{[0.001 + x][0.001]}{[0.001] - x}$		
		K	$a_{a2} = 1.2x10^{-2} =$	$x = \left[SO_{4,aq}^{2-} \right]$]
	nple: calculate the pH of 0 lfuric acid; $K_{a2} = 1.2 \times 10^{-2}$	0.0010	$1.2x10^{-2} + 0.001$	5% error	•

$$x^{2} + 0.013x - 1.2x10^{-5} = 0$$

$$x = \frac{-0.013 \pm \sqrt{(0.013)^{2} - 4(1)(-0.000012)}}{2(1)}$$

$$x = \frac{-0.013 \pm \sqrt{2.17x10^{-4}}}{2}$$

$$x = \frac{-0.013 \pm 0.0147}{2}$$
-Solution gives a neg Number which is not allowed
$$x = 8.65x10^{-4}$$

$$x = 9.000865$$

$$0.001865$$

$$y = 9.0001865$$

$$y = 9.0001865$$

Alternative Strategy to going to "exact equil. Expression"

ITERATIVE SOLUTIONS

Why? – because the real body or real world Is much too complex to always be able to Find an exact equilibrium expression

Calcula	te proton concentration of	f 0.100 M HNO ₂ using t	he <u>iterative</u>	<u>method</u> (K _a =6.0x10 ⁻⁴)	
1	Pure Water	H ₂ O	OH-	\mathbf{H}^{+}	
		55.5	10 -7	10-7	
		HNO ₂	NO ₂	H +	
-	stoic.	1	1	1	
2	[Init]	0.100	0	10-7	
_	Change	- X	+x	+ x	
	Assume	0.100 >> x	X	x>>10 ⁻⁷	
	[E quil]	0.100	X	X	
	Calc 1			$7.7x10^{-3}$	
3	New Equil	0.100-7.7x10 ⁻³	х''	x''	
띨	Calc 2			7.44x10 ⁻³	
4	New New Equil	0.100-7.44x10 ⁻³	x***	x***	
ш	Calc 3			7.45x10 ⁻³	
$K_a = \frac{x^2}{[HA_{eq}]} \qquad \sqrt{K_a[HA_{eq}]} = x$ $x'' = \sqrt{(6.0x10^{-4})(0.1 - 7.7x10^{-3})} = \sqrt{(6.0x10^{-4})(0.0923)}$					
= ($6.0x10^{-4}(0.1) = 7.7x$	`` _		$= 7.44x10^{-3}$	

Example Calculations

1.HCl

2.Acetic acid (vinegar)

3.HF

4.B(OH)₃ (Boric acid (eye wash)) (students Do this one yourself)

5.Mixture (HF and phenol)

6.Mixture (H₂SO₄, HSO₄-)

7.Triethylamine

8.NaAcetate

9.Our heme example

Calculation with Weak Base					
Calc. the [OH], [H], and pH of 0.20 M solns of triethylamine, $K_b = 4.0 \times 10^{-4}$					
		H ₂ O	H +	OH-	
1		<u>55.5</u>	10-7	10 -7	
	B	H_2O	\mathbf{BH}^{+}	OH-	
stoic	1	1	1	1	
² [Init]	0.20		0	10 -7	
Change	-X		+x	+x	
Assum	0.20 >> x		X	$10^{-7} < x$	
E quil	0.20		X	X	
Calc. the [OH], [H], and pH of 0.20 M solns of triethylamine, $K_b = 4.0 \times 10^{-4}$					

53	"A" students work (without solutions manual) ~ 10 problems/night.
I WANT YOU	Dr. Alanah Fitch Flanner Hall 402 508-3119 afitch@luc.edu Office Hours Th&F 2-3:30 pm Module #17B: Acid Base Ionization
TO PRACTICE EVERY DAY!	Computations Salts

1			H ₂ O 55.5	H ⁺ 10 ⁻⁷	OH- 10 ⁻⁷
		В	$\frac{33.3}{\text{H}_2\text{O}}$	BH ⁺	OH-
Н	stoic	1	1	1	1
2	[I nit]	0.20		0	10 -7
	Change	-X		+x	+ x
	Assum	0.20>>>	X	X	$10^{-7} < x$
	E quil	0.20		X	X
	$= 4.0x10^{-4} = -\frac{3}{4.0x10^{-4} \cdot 0.2} = -$			0.00894 + 0.00000001 0.00895001	0.20 - 0.00894 0.19106
	$8.94x10^{-3} + 10^{-7} \stackrel{5\%ernor}{\approx} 8.94x10^{-3} ?$ $0.20 - 8.94x10^{-3} \stackrel{5\%ernor}{\approx} 0.2 ?$		⁻³ ?	Rounds to 0.0089 Rounds to 0 $x = [OH^{-}] = 8.94x10^{-3}$	
	Calc. the [OH], [For triethylamine,		0.20 M solns	$pOH = (-1)[\log(6)]$ pH = 14 - 2.048 = -2.048	

- 1.HCl
- 2.Acetic acid (vinegar)
- 3.HF
- 4.B(OH)₃ (Boric acid (eye wash)) (students Do this one yourself)
- 5.Mixture (HF and phenol)
- 6.Mixture (H₂SO₄, HSO₄)
- 7. Triethylamine
- 8.NaAcetate
- 9.Our heme example

Write all reactions involving protons, hydroxides

$$Na(CH_3COO) + H_2O_{\ell} \stackrel{\rightarrow}{\leftarrow} Na_{aq}^+ + CH_3COO_{aq}^-$$

$$CH_3COO_{aq}^- + H_2O_{\ell} \stackrel{\rightarrow}{\leftarrow} OH_{aq}^- + CH_3COOH_{aq}$$

$$H_2O_{\ell} + Na_{aa}^+ \xrightarrow{no\ reaction} \rightarrow$$

$$H_2 O_{\ell} \stackrel{\rightarrow}{\leftarrow} H_{aq}^+ + O H_{aq}^- \qquad K_w = 10^{-14}$$

Determine who is omega and will donate

$$CH_3COO_{aq}^- + H_2O_{\ell} \stackrel{\rightarrow}{\leftarrow} OH_{aq}^- + CH_3COOH_{aq}$$

Hmm, a slight problem – we don't know K_h

If we place Na acetate in solution (to make a 0.1 M solution) what are the main species present? What will be the pH of the solution? $K_a = 1.8 \times 10^{-5}$

1	1	H ₂ O	H ⁺	OH-
1	J	55.5	10-7	10-7
		CH ₃ COO	$+ H_2O = CH_3CO$	OOH + OH-
2	stoich	1	1	1
	[Init]	0.1	0	10 -7
	Change	-X	+ x	$10^{-7} + x$
	Sum	0.1 -x	0+x	$10^{-7} + x$
	Assume	x << < 0.1		$x>>>10^{-7}$
	[E quil]	0.1	X	X
			e place Na acetate in solution tion) what are the main spe	*

$$CH_{3}COOH_{aq} + H_{2}O_{\ell} \stackrel{\rightarrow}{\leftarrow} CH_{3}COO_{aq}^{-} + H_{3}O_{aq}^{+} \qquad K_{a} = 1.8x10^{-5}$$

$$CH_{3}COO_{aq}^{-} + H_{3}O_{aq}^{+} \stackrel{\rightarrow}{\leftarrow} CH_{3}COOH_{aq} + H_{2}O_{\ell} \qquad \frac{1}{K_{a}}$$

$$H_{2}O_{\ell} + H_{2}O_{\ell} \stackrel{\rightarrow}{\leftarrow} H_{3}O_{aq}^{+} + OH_{aq}^{-} \qquad K_{w} = 10^{-14}$$

$$CH_{3}COO_{aq}^{-} + H_{2}O_{\ell} \stackrel{\rightarrow}{\leftarrow} CH_{3}COOH_{aq} + OH_{aq}^{-} \qquad K_{b} = \frac{1}{K_{a}}K_{w}$$

$$K_{w} = K_{a}K_{b}$$

$$\frac{10^{-14}}{1.8x10^{-5}} = K_{b} = 5.55x10^{-10}$$
If we place Na acetate in solution (to make a 0.1 M

solution) what are the main species present? What

will be the pH of the solution? $K_a = 1.8 \times 10^{-5}$

$$K_b = 5.55x10^{-10} \text{ CH}_3\text{COO}^- + \text{H}_2\text{O} = \text{CH}_3\text{COOH} + \text{OH}^-$$

$$| \text{stoich} \quad 1 \quad 1 \quad 1 \quad 1$$

$$| \text{Init} | \quad 0.1 \quad 0 \quad 10^{-7} \quad | \text{Change} \quad -\mathbf{x} \quad +\mathbf{x} \quad 10^{-7} + \mathbf{x}$$

$$| \text{Sum} \quad 0.1 - \mathbf{x} \quad 0 + \mathbf{x} \quad 10^{-7} + \mathbf{x}$$

$$| \text{Assume} \quad \mathbf{x} < < \mathbf{0.1} \quad \mathbf{x} \quad \mathbf{x} > > \mathbf{10}^{-7} + \mathbf{x}$$

$$| \text{Lequil} \quad 0.1 \quad \mathbf{x} \quad \mathbf{x} \quad \mathbf{x}$$

$$| \text{Sum} \quad 0.1 - \mathbf{x} \quad 0 + \mathbf{x} \quad 10^{-7} + \mathbf{x}$$

$$| \text{Lequil} \quad 0.1 \quad \mathbf{x} \quad \mathbf{x} \quad \mathbf{x} = \mathbf{x}$$

$$| \text{CH}_{aq,eq} | \mathbf{CH}_{aq,eq} | \mathbf{CH}$$

	$CH_3COO^- + H_2O^-$	$O = CH_3CC$	OH + OH.
stoich	1	1	1
[Init]	0.1	0	10-7
Change	-X	+x	$10^{-7} + x$
Sum	0.1 -x	0+x	$10^{-7} + x$
Assume	x<<<0.1		x>>> 10-7
[E quil]	0.1	X	X
Equil new	0.1 -x	X	$x+10^{-7}$
	$[x][x + 10^{-7}]$		

$$K_b = 5.55x10^{-10} = \frac{[x][x+10^{-7}]}{[0.1-x]}$$
$$(5.55x10^{-10})[0.1-x] = [x][x+10^{-7}] = x^2 + (10^{-7})x$$

If we place Na acetate in solution (to make a 0.1 M solution) what are the main species present? What will be the pH of the solution? $K_n = 1.8 \times 10^{-5}$

"A" students work (without solutions manual) ~ 10 problems/night.

_ .. ._ .

Dr. Alanah Fitch Flanner Hall 402 508-3119 afitch@luc.edu

Office Hours Th&F 2-3:30 pm

Module #17B: Acid Base Ionization Computations

Biological Chemistry

- 1.HCI
- 2. Acetic acid (vinegar)
- 3.HF
- 4.B(OH)₃ (Boric acid (eye wash)) (students Do this one yourself)
- 5.Mixture (HF and phenol)
- 6.Mixture (H₂SO₄, HSO₄⁻)
- 7. Triethylamine
- 8.NaAcetate
- 9. Our heme example

