

on S	Symbol	Charge	Radius (pm)	es in predicted e Charge/radius	
hydrogen	D+	1	4	0.25	11 1 11
lithium	Li+	1	89.66666667	0.011152416	H+ should
sodium	Na+	1	127.4285714	0.007847534	behave
potasium	K+	1	164	0.006097561	differently
cesium	Cs+	1	192.8333333	0.005185825	
				 ,	
beryllium	Be2+		2 5	9 0.033898305	Be ²⁺ and Mg ²⁺
magnesiu	Mg2+		2 8	5 0.023529412	should behave
calcium	Ca2+	2	129.	5 0.015444015	differently
strontium	Sr2+		143.333333	3 0.013953488	uniciently
barium	Ba2+		2 14	9 0.013422819	
oxide	02-		-2 124	.2 -0.01610306	1
sulfide	S2-			70 -0.011764706	O ² and, maybe, S ²
selenide	Se2-			34 -0.010869565	should behave
telluride	Te2-			0.009661836	differently
tellullue			- 2	0.009001030	
fluoride	F-		1 116.62	5 -0.008574491	F- should
chloride	CI-		1 16	7 -0.005988024	behave
bromide	Br-		1 18	2 -0.005494505	differently
iodine	II-		1 20	6 -0.004854369	q_1q_2

We saw that q/r > ~0.08 seemed to be "big" Which of these anions are not "alpha dogs"							
	name	formula	charge	radius	charge/radius		
No	perchlorate	CIO4-	1	236	0.004237288		
Clean	nitrate	NO3-	1	189	0.005291005	100	
Socks	bromide	Br-	1	182	0.005494505		
	chloride	CI-	/ 1	167	0.005988024	6	
		NSO4-	1	?	?		
		H2PO4-	1	?	?		
	hydrogen sulfide	HS-	1	?	?		
		HPO42-	2	?	?		
	hydrogen carbonate	HCO3-	1	163	0.006134969		
	acetate	CH3COO-	1	159	0.006289308		
Oh Card Me PleaSe	formate	HCOO-	1	158	0.006329114		
	nitrite	NO2-	1	155	0.006451613		
	hydroxide	OH-	1	140	0.007142857		
	fluoride	F-	1	116.625	0.008574491	The state of the s	
	sulfate	SO42-	2	230	0.008695652	3000	
	carbonate	CO32-	2	185	0.010810811	-13	
	sulfide	S2-	2	170	0.011764706	V WE	
	phosphate	PO43-	3	238	0.012605042		

Bronsted and Lowry definitions

B- and X- are bases (anions) which can accept protons

$$B_{aq}^- + H_{aq}^+ \stackrel{\rightarrow}{\leftarrow} HB_{aq}$$

$$X_{aq}^- + H_{aq}^+ \stackrel{\rightarrow}{\leftarrow} HX_{aq}$$

 $X_{aq}^- + H_{aq}^+ \xrightarrow{\sim} HX_{aq}$ HX and HB are species which can donate protons

$$HX_{aq} \stackrel{\rightarrow}{\leftarrow} X_{aq}^- + H_{aq}^+$$

$$HB_{aq} \stackrel{\rightarrow}{\leftarrow} B_{aq}^- + H_{aq}^+$$

$$B_{aq}^- + H_{aq}^+ \leftarrow HB_{aq}$$

Mass balance for B

- Occurs as both a "base" and "acid" form
- 2. The 2 forms are "linked" by the reaction
- 3. The 2 forms are "conjugated"
- The anion B⁻ is the "conjugate" base of HB

$$HX_{aq} \stackrel{\rightarrow}{\leftarrow} X_{aq}^- + H_{aq}^+$$

Mass balance for X

- Occurs as both a "base" and "acid" form
- The 2 forms are "linked" by the reaction
- The 2 forms are "conjugated"
- The HX is the conjugate acid of X⁻

- 1. Write the linking rx
- 2. Identify the mass balance component

Example:

What is conjugate base of:

$$HClO_{4,aq}
ightarrow H_{aq}^+ + ClO_{4,aq}^ H_2O_1
ightarrow H_{aq}^+ + OH_{aq}^ H_2O_1
ightarrow H_{aq}^+ + OH_3^ H_4^+$$
 $PH_4^+
ightarrow H_{aq}^+ + PH_3$ PH_4^+ Mass balance component

What is conjugate acid of:

$$CN_{,aq}^- + H_{aq}^+ \rightarrow HCN_{aq}$$
 $SO_{4,aq}^{2-} + H_{aq}^+ \rightarrow HSO_{4,aq}^-$
Linking reactions SO_4^{2-}

conjugate base	charge	radius	charge/radius	conjugate acid
CIO4-	1	236	0.004237288	HCIO4
NO3-	1	189	0.005291005	HNO3
Br-	1	182	0.005494505	HBr
CI-	1	167	0.005988024	HCIO4
HSO4-	1	?	?	H2SO4
H2PO4- —	1	?	?	→ H3PO4
HS-	1	?	?	H2S
HPO42-	2	?	?	→ H2PO4-
HCO3-	1	163	0.006134969	H2CO3
CH3COO-	1	159	0.006289308	H(CH3COO)
HCOO-	1	158	0.006329114	H(HCOO)
NO2-	1	155	0.006451613	HNO2
OH-	1	140	0.007142857	HOH
F-	1	116.625	0.008574491	HF
SO42-	2	230	0.008695652	HSO4-
CO32-	2	185	0.010810811	HCO3-
S2-	2	170	0.011764706	HS-
PO43-	3	238	0.012605042	HPO42-

Notice, that some anions occur in multiple rx

intermediate

Neither one

In every Bronsted-Lowry Acid-base reaction the position of the equilibrium favors transfer of the proton to the **stronger** base.

Water can be one of the conjugate pairs

$$HX_{aq} \stackrel{\rightarrow}{\leftarrow} H_{aq}^{+} + X_{aq}^{-}$$

$$\frac{H_{2}O_{\ell} + H_{aq}^{+} \stackrel{\rightarrow}{\leftarrow} H_{3}O_{aq}^{+}}{H_{2}O_{\ell} + HX_{aq} \stackrel{\rightarrow}{\leftarrow} H_{3}O_{aq}^{+} + X_{aq}^{-}}$$

The acid HX donates a proton to water
it is a proton donor = acid
The water molecule takes a proton from HX
it is a proton acceptor = base

Water is a Bronsted-Lowry Base

We looked at 2 water reactions

$$H_2O_\ell \stackrel{\rightarrow}{\leftarrow} H_{aq}^+ + OH_{,aq}^-$$

$$H_2O_\ell + H_{aq}^+ \stackrel{\rightarrow}{\leftarrow} H_3O_{,aq}^+$$

$$H_2O_\ell + H_2O_\ell \stackrel{\rightarrow}{\leftarrow} H_3O_{aq}^+ + OH_{,aq}^-$$
 Base 2 Acid 2

OH_{,aq} Acts as Arrhenius Acid source of protons Acts as Bronsted-Lowry Base proton acceptor

The ability of water to act as both acid/base Is called amphoteric

Weak bases are made by a BL reaction with water

$$R + H_2O_\ell \stackrel{\rightarrow}{\leftarrow} RH_{aq}^+ + OH_{aq}^-$$

$$NH_{3(aq)} + H_2O_{\ell} \stackrel{\rightarrow}{\leftarrow} NH_{4(aq)}^+ + OH_{aq}^-$$

Who is a proton donor (BL acid)? Water

Who is a proton acceptor (BL base)? Ammonia

What functional groups are "R"?

Write reaction to show the unbonded electrons on R (where R is N in ammonia)

$$H_2O+:R \rightarrow OH_{aq}^- + RH_{aq}^+$$

Write the reaction to show that electrons on R are attracted to proton on water

$$HO \cdot \cdot H +: R \rightarrow OH_{aq}^- + RH_{aq}^+$$

$$NH_3 + H_2O \xrightarrow{\sim} NH_4^+ + OH^ R + H_2O \rightarrow RH_{aq}^+ + OH_{aq}^-$$

Compounds in which H on $\mathrm{NH_3}$ has been replaced by –C groups react Similarly

Predict what happens when the following salts Are added to water Na⁺Cl⁻ does not "grab" OH from water, no effect Cldoes not "grab" H from water, no effect neutral $NH_{4}+Cl$ Arrhenius Acid: forms protons $NH_{4,aq}^+ + H_2O \rightarrow NH_{3,aq} + H_2O_{3q}^+$ acidic Bronsted Lowry Base: Na⁺ CH₃COO⁻ Proton acceptor $CH_3COO_{aa}^- + H_2O_\ell \rightarrow CH_3COOH_{aa} + OH_a^-$

What about NH₄F?

Arrhenius Acid: forms protons

$$NH_{4,aq}^+ + H_2O_{\ell} \stackrel{\rightarrow}{\leftarrow} NH_{3,aq} + H_2O_{3q}^+$$

$$F_{aq}^- + H_2O_\ell \stackrel{\rightarrow}{\leftarrow} HF_{aq} + OH_{aq}^-$$

Bronsted Lowry Base: Proton acceptor

basic

Who controls the pH?

Here we need to define one of our comparison numbers

FITCH Rules

- G1: Suzuki is Success
- G2. Slow me down

G3. Scientific Knowledge is Referential

- G4. Watch out for Red Herrings
- Chemists are Lazy
- C1. It's all about charge

C2. Everybody wants to "be like Mike"

- C3. Size Matters
- C4. Still Waters Run Deep
- C5. Alpha Dogs eat first

Definition of K_a "a" stands for "acid dissociation" $H_2O_\ell + HA_{aq} \rightarrow H_3O_{,aq}^+ + A_{aq}^- \qquad K_{eq}[55M] = K_a = \frac{\left[A_{aq}^-\right]\!\!\left[H_3O_{aq}^+\right]}{\left[HA_{aq}\right]}$

 $K_{eq} = \frac{\left[A_{aq}^{-}\right] \left[H_{3}O_{aq}^{+}\right]}{\left[H_{2}O_{\ell}\right]}$

Density of water is 1 g/mL

What is the molarity of liquid water?

 $\left(\frac{1gH_2O}{mL}\right)\left(\frac{10^3mL}{L}\right)\left(\frac{1mole\ H_2O}{18gH_2O}\right) = 55.55M$

Definition of K_h

"b" stands for "base reaction"

$$R + H_2O \rightarrow RH_{aa}^+ + OH_{aa}^-$$

$$K_{eq} = \frac{\left[RH_{aq}^{+}\right]\left[OH_{aq}^{-}\right]}{\left[R\right]\left[H_{2}O\right]}$$

$$K_{eq}[H_2O] = K_b = \frac{\left[RH_{aq}^+\right]\left[OH_{aq}^-\right]}{\left[R\right]}$$

$$K_b = \frac{\left[RH_{aq}^+\right]\left[OH_{aq}^-\right]}{\left[R\right]}$$

What about NH₄F?

$$NH_{4,aq}^+ + H_2O \rightarrow NH_{3,aq} + H_2O_{3q}^+ \qquad K_a = 5.6x10^{-10}$$

$$K_a = 5.6x10^{-10}$$

$$F_{aq}^- + H_2 O_\ell \stackrel{\rightarrow}{\leftarrow} H F_{aq} + O H_{aq}^-$$
 $K_b = 1.4 \times 10^{-11}$

$$K_b = 1.4 \times 10^{-11}$$

Who controls the pH?

Since the concentrations of NH₄⁺ and F⁻ are equal the reaction with the largest K_{eq} will be in control

Ammonium controls, solution goes acidic

What about NH₄ClO?

$$N\!H_{4,aq}^+ + H_2O \to N\!H_{3,aq} + H_2O_{3q}^+ \qquad K_a = 5.6x10^{-10}$$

$$K_a = 5.6x10^{-10}$$

$$ClO_{aq}^- + H_2O_{\ell} \stackrel{\rightarrow}{\leftarrow} HClO_{aq} + OH_{aq}^-$$
 $K_b = 3.6x10^{-7}$

$$K_b = 3.6x10^{-7}$$

Who controls the pH?

Reaction with largest K_{eq}

ClO- controls, solution goes basic

"A" students work (without solutions manual) ~ 10 problems/night.

> Dr. Alanah Fitch Flanner Hall 402 508-3119 afitch@luc.edu

Office Hours Th&F 2-3:30 pm

Module #17A: Acid BaseVisualization

Using Ka and Kb Values for comparison

conjugate base	charge	radius	charge/radius	conjugate acid	Ka
CIO4-	1	236	0.004237288	HCIO4	
NO3-	1	189	0.005291005	HNO3	
Br-	1	182	0.005494505	HBr	
CI-	1	167	0.005988024	HCIO4	
HSO4-	1	?	?	H2SO4	
H2PO4-	1	?	?	H3PO4	0.01
HS-	1	?	?	H2S	1.0X10-7
HPO42-	2	?	?	H2PO4-	6.1X10-8
HCO3-	1	163	0.006134969	H2CO3	4.4x10-7
CH3COO-	1	159	0.006289308	H(CH3COO)	1.8x10-5
HCOO-	1	158	0.006329114	H(HCOO)	1.9x10-4
NO2-	1	155	0.006451613	HNO2	6.0x10-4
OH-	1	140	0.007142857	HOH	1.OX10-1
F-	1	116.625	0.008574491	HF	6.9x10-4
SO42-	2	230	0.008695652	HSO4-	0.01
CO32-	2	185	0.010810811	HCO3-	4.7x10-1
S2-	2	170	0.011764706	HS-	1.2x10-1
PO43-	3	238	0.012605042	HPO42-	4.5x10-1

Formula	Name	Value of K _a *	
HSO₄¯	Hydrogen sulfate ion	1.2 x 10 ⁻²	_
HCIO ₂	Chlorous acid	1.2 x 10 ⁻²	1
HC2H2CIO2	Monochloracetic acid	1.35 x 10 ⁻³	_
dF	Hydrofluoric acid	7.2 x 10 ⁻⁴	Increasing acid strength
HNO ₂	Nitrous acid	4.0 x 10 ⁻⁴	stre
HC2H3O2	Acetic acid	1.8 x 10 ⁻⁵	jë Si
AI(H ₂ O) ₆ ³⁺	Hydrated aluminum(III) ion	1.4 x 10 ⁻⁵	gac
HOCI	Hypochlorous acid	3.5 x 10 ⁻⁸	Sin
HCN	Hydrocyanic acid	6.2 x 10 ⁻¹⁰	l ea
NH4 ⁺	Ammonium ion	5.6 x 10 ^{–10}	≝
HOC6H5	Phenol	1.6 x 10 ⁻¹⁰	
The	mol/L but are customarily omitted.		

Polyprotic acids can supply more than 1 proton

$$H_2CO_{3,aq} \stackrel{\rightarrow}{\leftarrow} H_{aq}^+ + HCO_{3aq}^-$$

$$HCO_{3aq}^{-} \stackrel{\rightarrow}{\leftarrow} H_{aq}^{+} + CO_{3aq}^{2-}$$

Commonly: $K_{a1} >>> K_{a2}$ which means commonly (but not always!) only the first one makes the proton contribution.

General Trend K_{a1} vs K_{a2}?

	K_{a1}		K_{a2}		
H_2SO_4	00	HSO_4^-	$1.2x10^{-2}$	SO_4^{2-}	
H_3PO_3	$1.00x10^{-2}$	$H_2PO_3^-$	$2.6x10^{-7}$	HPO_3^{2-}	
H_2SO_3	1.7×10^{-2}	HSO_3^-	6.4×10^{-8}	SO_3^{2-}	
$H_2(COO)_2$	5.9×10^{-2}	$H(CO_2)_2^-$	$6.4x10^{-5}$	$(CO_2)_2^{2-}$	
$H_2C_2H_2O_2(COO)_2$	$1.0x10^{-3}$	$HC_2H_2O_2(COO)_2^-$	$4.6x10^{-5}$	$C_2H_2O_2(COO)_2^{2-}$	
$H_3 PO_4$	$7.5x10^{-3}$	$H_2PO_4^{-}$	$6.2x10^{-8}$	HPO_4^{2-}	$4.2x10^{-13}$
$H_3C_3OH_5(COO)_3$	$7.4x10^{-4}$	$H_2C_3OH_5(COO)_3^-$	1.7×10^{-5}	$HC_3OH_5(COO)_3^{2-}$	$4.0x10^{-7}$
$H_2C_6H_6O_6$	$8.0x10^{-5}$	$HC_6H_6O_6^-$	$1.6x10^{-12}$	$C_6 H_6 O_6^{2-}$	
H_2CO_3	$4.45x10^{-7}$	HCO_3^-	$5.6x10^{-11}$	CO_3^{2-}	
H_2S	5.7×10^{-8}	HS^-	$1.x10^{-15}$		

Ascorbic Acid; polar bear liver

"A" students work (without solutions manual) ~ 10 problems/night.

> Dr. Alanah Fitch Flanner Hall 402 508-3119 afitch@luc.edu

Office Hours Th&F 2-3:30 pm

Module #17A: Acid Base Visualization