

"A" students work (without solutions manual) ~ 10 problems/night.

> Dr. Alanah Fitch Flanner Hall 402 508-3119 afitch@luc.edu

Office Hours Th&F 2-3:30 pm

Module #15: Introduction to Equilibrium

> 1. Define Equilibrium, And equilibrium constant

Gaseous Chemical Equilibrium

- 1. Can balance equations
- Can predict direction of reaction (ΔH)
- 3. Can compute rates

$$rate = -\frac{d[A]}{adt} = k[A]^m$$

4. Can we predict what happens at end?

Our Friend for this Chapter

Dinitrogen tetroxide

- A. Intermediate in:
 - nitric acid & sulfuric acid production
 - nitration of organic compound & explosives
 - manufacture of oxidized cellulose compound (hemostatic cotton)
- B. Used to bleach flour
- C. Proposed as oxidizing agent in rocket propulsion nitrogen dioxide.

We studied it's decomposition kinetics in The preceding chapter

$$N_2O_{4,g} \rightarrow 2NO_{2,g}$$

Consider the reaction at 100 °C, where the initial Pressure of dinitrogen tetroxide is 1 atm:

- 10 1 **40111**

The decomposition of dinitrogen tetroxide vs time Is shown in the table below

S	N2O4, atm	NO2, atm
0	1	0
20	0.6	8.0
40	0.35	1.3
60	0.22	1.56
80	0.22	1.56
100	0.22	1.56

 $N_2O_{4,g} \rightarrow 2NO_{2,g}$

review

The reaction order and

Rate constant can be determined by various time/conc. plots

			$N_{2}O_{4,}$	$_g \rightarrow 2NO_2$.s review
S	N2O4, atm	NO2, atm	1/N204	In N204	
0	1	0	1	0	
20	0.6	0.8	1.67	-0.51	
40	0.35	1.3	2.86	-1.05	
60	0.22	1.56	4.55	-1.51	
80 100	0.22 0.22	1.56 1.56	4.55 4.55	-1.51 -1.51	
$rate = k$ $[A_t] = [A$	$\begin{bmatrix} A \end{bmatrix}^0$	rate	$e = k[A]^{1}$ $= \ln[A_o] -$	100 120	$rate = k[A]^{2}$ $\frac{1}{[A]} - \frac{1}{[A_{0}]} = kt$

"Equilibrium" = "steady state concentrations"

1. occurs when rate forward = rate backward $Rate_{forward} = Rate_{backward} \qquad N_2 O_{4,g} \xrightarrow{k_{forward} = 0.0254\frac{1}{s}} > 2NO_{2,g}$ $k_f P_{N_2 O_{4,g}} = k_b \left(P_{NO_{2,g}} \right)^2 \qquad 2NO_{2,g} \xrightarrow{k_{backward} = 0.002309\frac{1}{atm \cdot s}} > N_2 O_{4,g}$ $\frac{k_f}{k_b} = \frac{\left(P_{NO_{2,g}} \right)^2}{P_{N_2 O_{4,g}}}$ 2. concentrations are also constant (steady state) $\frac{k_f}{k_b} = \frac{\left(P_{NO_{2,g}} \right)^2}{P_{N_2 O_{4,g}}} = K_{equilibrium} \qquad K_{equilibrium} = \frac{0.0254\frac{1}{s}}{0.002309\frac{1}{atm \cdot s}} = 1 latm$ 3. BOTH reactions are occurring competitively $N_2 O_{4,g} \xrightarrow{k} 2NO_{2,g} \quad \text{ojo}$

$$PV = nRT$$

$$\frac{P}{RT} = \frac{n}{V} = [molarity]$$

$$P = RT[molarity]$$

$$K_{Pressue} = \frac{(P_C)^c (P_D)^d}{(P_A)^a (P_B)^b}$$

$$K_{Pressue} = \frac{(RT[C])^c (RT[D])^d}{(RT[A])^a (RT[B])^b}$$

$$K_{Pressue} = \frac{(RT)^{c+d} (RT)^{a} (RT)^{b}}{(RT)^a (RT)^b} \begin{cases} K_{Pressue} = (RT)^{(c+d)-(a+b)} K_{concentration} \\ K_{Pressue} = (RT)^{(c+d)-(a+b)} K_{concentration} \end{cases}$$

$$K_{Pressue} = (RT)^{\Delta n_{f-i}} K_{concentration}$$

Example What is K_C for the Haber Process at 127°C if the equilibrium concentrations of gases are $NH_3 = 3.1 \times 10^{-2} \, \text{mol/L}$; $N_2 = 8.5 \times 10^{-1} \, \text{mol/L}$; and $H_2 = 3.1 \times 10^{-3} \, \text{mol/L}$?

$$K = \frac{\left[NH_3\right]^2}{\left[N_2\right]\left[H_2\right]^3}$$
Let's reverse the reaction
$$K = \frac{\left[NH_3\right]^2}{\left[N_2\right]\left[H_2\right]^3}$$

$$2NH_3 \stackrel{?}{\leftarrow} N_2 + 3H_2$$

$$K_{reverse} = K' = \frac{\left[N_2\right]\left[H_2\right]^3}{\left[NH_3\right]^2}$$

$$K' = \frac{1}{K}$$
We will compile our rules
After a few examples.
$$K' = \frac{1}{3.8x10^4 \frac{1}{M^2}}$$
What is the first rule we have shown here?
$$K' = 2.6x10^{-6} M^2$$

An example of adding chemical reactions

$$SO_{2(g)} + \frac{1}{2}O_{2(g)} \stackrel{?}{\sim} SO_{3(g)} \qquad K_{SO2} = 2.3$$

$$NO_{2(g)} \stackrel{?}{\sim} NO_{(g)} + \frac{1}{2}O_{2(g)} \qquad K_{NO2} = 4.0$$

$$SO_{2(g)} + NO_{2(g)} \stackrel{?}{\sim} NO_{(g)} + SO_{3(g)} \qquad K_{rx} = K_{SO2}K_{NO2}$$

$$K_{SO2} = \frac{\left[SO_{3(g)}\right]}{\left[SO_{2(g)}\right]^{\frac{1}{2}}}$$

$$K_{SO2} = \frac{\left[SO_{3(g)}\right]}{\left[SO_{2(g)}\right]^{\frac{1}{2}}} \qquad K_{NO2} = \frac{\left[NO_{(g)}\right]\left[O_{2(g)}\right]^{\frac{1}{2}}}{\left[NO_{2(g)}\right]}$$

$$\left(K_{SO2}\right)\left(K_{NO2}\right) = \left(\frac{\left[SO_{3(g)}\right]}{\left[SO_{2(g)}\right]^{\frac{1}{2}}}\right) \left(\frac{\left[NO_{(g)}\right]\left[O_{2(g)}\right]^{\frac{1}{2}}}{\left[NO_{2(g)}\right]}\right) = \frac{\left[SO_{3(g)}\right]\left[NO_{(g)}\right]}{\left[SO_{2(g)}\right]\left[NO_{2(g)}\right]} = K_{rx}$$

$$K_{rx} = K_{SO2}K_{NO2} = 2.3x4.0 = 9.2$$

Heterogeneous Equilibria

Are equilibria that involve more than one phase

The position of a heterogeneous equilibrium does not Depend on the amounts of the pure solids or liquids present

Reversing Reactions $aA + bB \stackrel{\rightarrow}{\leftarrow} cC + dD$ $K_C = \frac{\left[C\right]^c \left[D\right]^d}{\left[A\right]^a \left[B\right]^b}$ Same patterns $cC + dD \stackrel{\rightarrow}{\leftarrow} aA + bB$ For K_n $K'_C = \frac{1}{K} = \frac{[A]^a [B]^b}{[C]^c [D]^d}$ Summing reactions $aA + bB \stackrel{\rightarrow}{\leftarrow} cC + dD$ K_{AB} $cC + dD \stackrel{\rightarrow}{\sim} eE + fF$ $(K_{AB})(K_{CD})$ $aA + bB \stackrel{\rightarrow}{\leftarrow} eE + fF$ Multiplying reactions $n(aA + bB \stackrel{\rightarrow}{\leftarrow} cC + dD)$ $aA + bB \stackrel{\rightarrow}{\leftarrow} cC + dD$

Example Problem: Bone is called apatite and can dissolve:

$$Ca_{10}(PO_4)_c(OH)_2 \xrightarrow{5} 10Ca_{aa}^{2+} + 6PO_{4aa}^{3-} + 2OH_{aa}^{-}$$

What is the proper grammar for K?

K

K

 $KKK = K^3$

 $aA + bB \stackrel{\rightarrow}{\leftarrow} cC + dD$

 $aA + bB \stackrel{\rightarrow}{\leftarrow} cC + dD$

 $3aA + 3bB \stackrel{\rightarrow}{}_{\leftarrow} 3cC + 3dD$

$$K = \frac{\left[Ca_{aq}^{2+}\right]^{10} \left[PO_{4,aq}^{3-}\right]^{6} \left[OH_{aq}^{-}\right]^{2}}{\left[Ca_{10}\left(PO_{4}\right)_{6}\left(OH\right)_{2,s}\right]}$$

$$K = \left[Ca_{aq}^{2+} \right]^{10} \left[PO_{4,aq}^{3-} \right]^{6} \left[OH_{aq}^{-} \right]^{2}$$

"A" students work (without solutions manual) ~ 10 problems/night.

> Dr. Alanah Fitch Flanner Hall 402 508-3119 afitch@luc.edu

Office Hours Th&F 2-3:30 pm

Module #15: Introduction to Equilibrium

Calculating Equilibrium Concentrations; 4 examples

- 3. Use K_{conc} to determine if a Rx will go:
- a. Compute Q, the "reaction quotient"
- b. if $Q < K_{conc}$, rx goes to right if $Q = K_{conc}$, rx is at equilibrium if $Q > K_{conc}$, rx goes to left

What is Q?

$$Q = \frac{\left[C_i\right]^c \left[D_i\right]^d}{\left[A_i\right]^a \left[B_i\right]^b}$$

i=initial

$$K_C = \frac{\left[C_{eq}\right]^c \left[D_{eq}\right]^d}{\left[A_{eq}\right]^a \left[B_{eq}\right]^b}$$

$$aA + bB \stackrel{\rightarrow}{\leftarrow} cC + dD$$

K_{conc}

- 1. We can express it.
- 2. We can compute it's numerical value
- 3. We can use it to:
 - a: Tell if a rx will go
 - b. Compute [eq]
 - c. Compute [eq] after some change, Δ

Example 1: Use old friend N₂O₄

What happens when 0.2mole of N_2O_4 and 0.2 mole of NO_2 are added together in a 4 L vol? Recall $K_{conc} = 0.36M$

	cone
KNOW	Don't KNOW
mole = 0.2 mol	initial conc.
vol = 4 L	rx?
K = 0.36M	

$$N_{2}O_{4} \stackrel{?}{\leftarrow} 2NO_{2(g)} \qquad \qquad \left[N_{2}O_{4}\right]_{init} = \frac{0.2mol}{4L} = 0.05M$$

$$K = 0.36M \Rightarrow \left[\frac{NO_{2}}{V_{2}}\right]^{2} \qquad \qquad \left[NO_{2}\right]_{init} = \frac{0.2mol}{4L} = 0.05M$$

$$Q<,=,>K? \qquad \qquad Q = \frac{\left[NO_{2}\right]_{init}}{\left[N_{2}O_{4}\right]_{init}} = \frac{(0.05M)^{2}}{0.05M} = 0.05M$$
will reaction go?
$$Q = 0.05M < K = 0.36M; rx \xrightarrow{right}$$

K_{conc}

We can express it.

We can compute it's numerical value

We can use it to:

Tell if a rx will go

Compute [eq] b.

Compute [eq] after some change, Δ

EXAMPLE 2: A BIT SIMPLE

For the system (all are gases) K_c is 0.64 at 900 K.:

$$CO_{2,g} + H_{2,g} \stackrel{\rightarrow}{\leftarrow} CO_g + H_2O_g$$

Suppose we start with CO₂ and H₂, both at a concentration of

When the system reaches equilibrium, what are the concentrations of products and reactants at 900K?

Red herrings?

Balance Equation already done

Rules for Equilibrium Calculations

1. Write balanced reaction

2. Write the equilibrium expression

3. Calculate the initial conc., C_i

4. Calculate Q and determine if rx goes to left or to right.

5. Express "equil. C" (C_{eq}) in terms of init C and change, x, $(C_{eq} = C_i x)$

6. Write K and put in C_{eq}, solve for x 7. Calculate equilibrium molarities

8****

Check your answer!!!!!

 $CO_{2,g} + H_{2,g} \stackrel{\rightarrow}{\leftarrow} CO_g + H_2O_g$

K_c is 0.64 at 900 K. Suppose we

start with CO₂ and H₂, both at a concentration of 0.100 mol/L.

$$K_C = \frac{\left[C_{eq}\right]^c \left[D_{eq}\right]^d}{\left[A_{eq}\right]^a \left[B_{eq}\right]^b}$$

$$K_C = \frac{\left[CO_g\right]^1 \left[H_2O_g\right]^1}{\left[CO_{2,g}\right]^1 \left[H_{2,g}\right]^1} = 0.6$$

Calculate Original or Initial Concentrations

$$[CO_2]_{init} = 0.100 \text{ mol/L}$$

$$[H_2]_{init} = 0.100 \text{ mol/L}$$

Calculate Q and determine if rx goes 1 or r.

$$Q = \frac{[CO]_{init}[H_2O]_{init}}{[CO_2]_{init}[H_2]_{init}} = \frac{0}{[0.100][0.100]}$$

$$Q = 0 < K_c = 0.64; rx \xrightarrow{right}$$

5. Express "equil. C" in terms of init C+ or - x
$$CO_{2,g} + H_{2,g} \stackrel{?}{\leftarrow} CO_g + H_2O_g \qquad Q = 0 < K_c = 0.64; rx \xrightarrow{right}$$
Mass balance Limiting reaction

$$\begin{bmatrix} CO_2 \end{bmatrix}_{eq} = \begin{bmatrix} CO_2 \end{bmatrix}_{init} - x \qquad \qquad \begin{bmatrix} CO \end{bmatrix}_{eq} = \begin{bmatrix} CO \end{bmatrix}_{init} + x$$

$$\begin{bmatrix} H_2 \end{bmatrix}_{eq} = \begin{bmatrix} H_2 \end{bmatrix}_{init} - x \qquad \qquad \begin{bmatrix} H_2O \end{bmatrix}_{eq} = \begin{bmatrix} H_2O \end{bmatrix}_{init} + x$$

OR: Construct an ICE chart

	Reaction:	$ CO_{2,g} + H_{2,g} \underset{\leftarrow}{\rightarrow} CO_g + H_2O_g $				
	stoichiometry	1	1	1	1	
1	Initial conc	0.100	0.100	0	0	
	Change (to right)	- x	-x	+x	+x	
\	Equil. conc	0.100-x	0.100-x	0+x	0+x	

6. Write K and put in equil Conc.

$$K = \frac{[CO]_{eq}[H_2O]_{eq}}{[CO_2]_{eq}[H_2]_{eq}} = \frac{(x)(x)}{[0.100 - x][0.100 - x]} = \left(\frac{x}{0.100 - x}\right)^2$$

		CO ₂	H_2	CO	H ₂ O
stoichi	iometry	1	1	1	1
initial	conc	0.100	0.100	0	0
change	e (to right)	X	-X	+x	<u>+x</u>
Equil.	conc	0.100-x	0.100-x	0+x	0+x

$$[CO_2]_{eq} = [H_2]_{eq} = 0.100-x = 0.05556 M$$

$$[CO]_{eq} = [H_2O]_{eq} = 0.0444 M$$

8**** Check your answer!!!!!

Suggestions for ways?

$$K = \frac{[CO]_{eq}[H_2O]_{eq}}{[CO_2]_{eq}[H_2]_{eq}} = 0.64 = \frac{?}{(0.0444M)(0.0444M)} = 0.638$$

OJO: When I round first and then check I get:

$$K_c = 0.60.$$

EXAMPLE PROBLEM 3: More difficult

If we add 0.1 mol of N_2O_4 in 1 L, what are the equilibrium concentrations? Recall that $K_c = 0.36M$.

Red herrings?

Balance Equation

$$N_2O_4 \overset{\rightarrow}{\leftarrow} 2NO_{2(g)}$$

2. Write K

$$K_{C} = \frac{\left[C_{eq}\right]^{c} \left[D_{eq}\right]^{d}}{\left[A_{eq}\right]^{a} \left[B_{eq}\right]^{b}} = \frac{\left[NO_{2,g,eq}\right]^{2}}{\left[N_{2}O_{4,g,eq}\right]} = 0.36M$$

3. Calculate Original or Initial Concentrations

0.1 mol of N₂O₄ in 1 L
$$\left[N_2O_4\right]_o = \frac{0.1mol}{1L} = 0.1M$$
 $\left[NO_2\right]_o = \frac{0.0mol}{1L} = 0.00M$

$$N_{2}O_{4} \stackrel{?}{\sim} 2NO_{2(g)} \qquad K = 0.36M$$

$$K = 0.36M = \frac{\left[NO_{2}\right]^{2}}{\left[N_{2}O_{4}\right]}$$

$$\left[N_{2}O_{4}\right]_{o} = \frac{0.1mol}{1L} = 0.1M$$

$$\left[NO_{2}\right]_{o} = \frac{0.0mol}{1L} = 0.00M$$

$$\frac{4. \qquad \text{Calculate Q and determine if rx goes 1 or r}}{\left[N_{2}O_{4}\right]_{init}} = \frac{\left(0.0M\right)^{2}}{0.1M} = 0.0M < K_{c}; rx \xrightarrow{right}$$

$$4x^{2} + K_{c}x - 0.1K_{c} = 0 K_{c} = 0.36M$$

$$ax^{2} + bx + c = 0$$

$$a = 4 b = K_{c} c = -0.1K_{c}$$

$$x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$x = \frac{-0.36 \pm \sqrt{(0.36)^{2} - 4(4)(-0.036)}}{2(4)} OJO!!!$$

$$x = \frac{-0.36 \pm \sqrt{(0.36)^{2} + 0.5764(4)(0.036)}}{8}$$

$$x = \frac{-0.36 \pm \sqrt{0.7056}}{8} = \frac{-0.36 \pm 0.84}{8} = 0.06 and -0.15$$
Which is plausible?

If we add 0.1 mol of N_2O_4 in 1 L, what are the equilibrium concentrations? Recall that $K_{\rm c}=0.36$ M.

0+2x

$$x = \frac{-0.36 \pm \sqrt{0.7056}}{8} = \frac{-0.36 \pm 0.84}{8} = 0.06 \text{ and } -0.15$$
Initial conc $\frac{N_2 O_4}{0.1}$ $\frac{NO_2}{0.1}$
Change (to right) $-x$ $+2x$

0.1 - x

No, not plausible. We would be forced to conclude: x = -0.15

$$2x = [NO_2] = -0.3 \text{ M}$$

Equil. conc

$$N_2O_4 \stackrel{\rightarrow}{\leftarrow} 2NO_{2(g)}$$

- 1. Plausible: $[N_2O_4]$ decreased? $0.1 \rightarrow .04$? Plausible: [NO] increased? $0 \rightarrow 0.12$?
- 2. Fits the equilibrium constant?

$$K = 0.36M = \frac{\left[NO_2\right]^2}{\left[N_2O_4\right]} = \frac{\left[0.12\right]^2}{\left[0.04\right]} = 0.36M$$

If we add 0.1 mol of N_2O_4 in 1 L, what are the equilibrium concentrations? Recall that $K_c = 0.36$ M.

Example 4: Do Units Matter in how we approach the problem?:

For the reaction of hydrogen gas with iodine gas at room temperature the K_p is 1×10^{-2} . Suppose that you mix HI at 0.5, H_2 at 0.01 and I_2 at 0.005 atm in 5 liter volume. Calculate the equilibrium Pressures.

Beforehand: red herrings?

5L volume

Balance Equation

$$H_{2,g} + I_{2,g} \stackrel{\rightarrow}{\leftarrow} 2HI_{(g)}$$

Write K

$$aA + bB \stackrel{\rightarrow}{\leftarrow} cC + dD$$

$$K_{\text{Pr essue}} = \frac{\left(P_C\right)^c \left(P_D\right)^d}{\left(P_A\right)^a \left(P_B\right)^b}$$

OJO

$$K_{Pr essue} = \frac{\left(P_{C}\right)^{c} \left(P_{D}\right)^{d}}{\left(P_{A}\right)^{a} \left(P_{B}\right)^{b}} \qquad K_{P} = \frac{\left(P_{HI,eq}\right)^{2}}{\left(P_{H_{2},eq}\right) \left(P_{I_{2},eq}\right)} = 1 \times 10^{-2}$$

For the reaction of hydrogen gas with iodine gas at room temperature the K_n is $1x10^{-2}$. Suppose that you mix HI at 0.5, H₂ at 0.01 and I₂ at 0.005 atm in 5 liter volume. Calculate the equilibrium Pressures.

Express "equil. C" in terms of orig C+ or - x

	H_2	${ m I}_2$	HI
stoichiometry	1	1	2
Initial conc	.01	.005	0.5
Change (to <u>left</u>)	+ x	+x	-2x
Equil. conc	.01+x	.005+x	0.5-2x

Write K and put in equil Pressures

$$K_p = \frac{(0.5 - 2x)^2}{(0.01 + x)(0.005 + x)}$$

For the reaction of hydrogen gas with iodine gas at room temperature the K_n is $1x10^{-2}$. Suppose that you mix HI at 0.5, H_2 at 0.01 and I_2 at 0.005 atm in 5 liter volume. Calculate the equilibrium Pressures.

Calculate Original or Initial Conc or Pressure

A bit of red herring = already know them.

 $P_{HI} = 0.5 \text{ atm}_{init}$

 $P_{H2} = 0.01 \text{ atm}_{init}$

 $P_{12} = 0.005 \text{ atm}_{init}$

Calculate O and determine if rx goes l or r

$$Q = \frac{\left(P_{HI,init}\right)^{2}}{\left(P_{H,init}\right)\left(P_{I_{1},init}\right)} = \frac{\left(0.5atm\right)^{2}}{\left(0.1atm\right)\left(0.005atm\right)} = 5000 > K_{p} = 0.01; rx \leftarrow^{left}$$

$$K_{p} = \frac{(0.5 - 2x)^{2}}{(0.01 + x)(0.005 + x)} \qquad K_{p} = 0.01$$

$$K_{p}(0.01 + x)(0.005 + x) = (0.5 - 2x)^{2}$$

$$K_{p}(5x10^{-5} + 0.015x + x^{2}) = 0.25 - 2x + 4x^{2}$$

$$5x10^{-5}K_{p} + 0.015xK_{p} + x^{2}K_{p} = 0.25 - 2x + 4x^{2}$$

$$0.25 - 2x + 4x^{2} - (5x10^{-5}K_{p} + 0.015xK_{p} + x^{2}K_{p}) = 0$$

$$(4x^{2} - 2x + 0.25) - 5x10^{-5}K_{p} - 0.015xK_{p} - x^{2}K_{p} = (4x^{2} - x^{2}K_{p}) + (-2x - 0.015xK_{p}) + (0.25 - 5x10^{-5}K_{p}) = 0$$

$$(4 - K_{p})x^{2} - x(2 + 0.015K_{p}) + (0.25 - 5x10^{-5}K_{p}) = 0$$

$$(4 - 0.01)x^{2} - x(2 + 0.00015) + (0.25 - 5x10^{-7}) = 0$$

$$(3.99)x^{2} - x(2.00015) + (0.2499995) = 0$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \qquad (3.99)x^2 - x(2.00015) + (0.2499995) = 0$$

$$x = \frac{-(-2)00015) \pm \sqrt{(-2.00015)^2 - 4(3.99)(0.2499995)}}{2(3.99)}$$

$$x = \frac{2.00015 \pm \sqrt{4.0006 - 3.98992}}{7.98}$$

$$x = \frac{2.00015 \pm 0.102995}{7.98}$$

$$x = 0.237739$$

$$x = 0.263552$$

x = 0.237739						
	H ₂	I_2	HI			
stoichiometry	1	1	2			
Initial conc	.01	.005	0.5			
Change (to <u>left</u>)	_ + x	+x	-2x			
Equil. conc	.01+x	.005+x	0.5-2x			
$P_{HI,eq} = 0.5 - 2x = 0.5 -$	2(0.237739	0) = 0.024523				
$P_{I_2,eq} = 0.005 + x = 0.005 + 0.237739 = 0.242739$						
$P_{H_2,eq} = 0.01 + x = 0.01 + 0.237739 = 0.247739$						
$K = \frac{\left(P_{HI,eq}\right)^2}{\left(P_{H_2,eq}\right)\left(P_{I_2,eq}\right)} = \frac{1}{\left(1 + \frac{1}{2}\right)^2}$	(0.02452 0.242739)(0	$\frac{23)^2}{0.247739} = 0.01$	Checks!!!			

FITCH Rules

- G1: Suzuki is Success
- G2. Slow me down
- G3. Scientific Knowledge is Referential
- G4. Watch out for Red Herrings
- G5. Chemists are Lazy
- C1. It's all about charge $E_{el} = k$
- C2. Everybody wants to "be like Mike"
- C3. Size Matters
- C4. Still Waters Run Deep
- C5. Alpha Dogs eat first

Example on Using Simplifications

If 1.0 mol NOCl is placed in a 2.0 L flask what are the equilibrium concentrations of NO and Cl₂ given that at 35 °C the equilibrium constant, K_a , is 1.6x10⁻⁵ mol/L?

35 °C is a red herring Red herrings:

Clues?

K is "small" compared to others (<<< 1) we have worked with !!!!!

Example 2 $CO_{2,g} + H_{2,g} \stackrel{\rightarrow}{\leftarrow} CO_g + H_2O_g \quad \text{K}_c \text{ is } 0.64.$

EXAMPLE 3: $N_2O_4 \stackrel{\rightarrow}{\leftarrow} 2NO_{2(g)}$ $K_c = 0.36M$ We will define **Small in the**

 K_p is $1x10^{-2}$. Next chapter! Example 4: $H_{2,g} + I_{2,g} \stackrel{\rightarrow}{\leftarrow} 2HI_{(g)}$

Example on Using Simplifications

If 1.0 mol NOCl is placed in a 2.0 L flask what are the equilibrium concentrations of NO and Cl₂ given that at 35 °C the equilibrium constant, K_c , is 1.6x10⁻⁵ mol/L?

35 °C is a red herring Red herrings:

Clues?

K is "small" compared to others (<<< 1) we have worked with !!!!!

We are starting with reactants

Balance Equation 2. Write K

 $2NOCl \stackrel{\rightarrow}{\sim} 2NO + Cl_2$

 $2NOCl \stackrel{\rightarrow}{\sim} 2NO + Cl_2$

If 1.0 mol NOCl is placed in a 2.0 L flask what are the equilibrium concentrations of NO and Cl₂ given that at 35C the equilibrium constant is 1.6x10⁻⁵ mol/L?

Calculate or Initial Concentrations

 $[NOCl_{init}] = 1.0 \text{ mol/}2L = 0.5 \text{ M}$ $[NO_{init}] = 0 M$ $[Cl_{2init}] = 0 M$

Calculate Q and determine if rx goes 1 or

$$Q = \frac{\left[NO_{g,init}\right]^2 \left[Cl_{2,g,init}\right]}{\left[NOCl_{g,init}\right]^2} = \frac{(0)(0)}{0.5} = 0; rx \xrightarrow{right}$$

$$K = 16x^{3}$$

$$1.6x10^{-5} = 16x^{3}$$

$$\frac{1.6x10^{-5}}{16} = x^{3}$$

$$10^{-6} = x^{3}$$

$$\sqrt[3]{10^{-6}} = x$$

$$x = 10^{-2}$$
7. Calculate equilibrium molarities

NOC1	NO	Cl₂	
stoichiometry	2	2	1
Initial conc	0.5	0	0
Change (to right)			
$$\frac{-2x}{0.5-2x} + \frac{2x}{0+2x} \times \frac{x}{0+2x} = \frac{x}{0+2x} = \frac{x}{0+2x}$$			
Assumptions	NOCl_{g,eq}	= 05	$\frac{NO_{g,eq}}{0.5-2x} = 2x = 2x = 10^{-2}$
ARE WE DONE?			

8**** Check your answer!!!!!

$$\left[NOCl_{g,eq}\right] = 0.5$$

$$\begin{bmatrix} NOCl_{g,eq} \end{bmatrix} = 0.5$$
$$\begin{bmatrix} NO_{g,eq} \end{bmatrix} = 2x = 2x10^{-2}$$
$$\begin{bmatrix} Cl_{2,g,eq} \end{bmatrix} = x = 10^{-2}$$

$$[Cl_{2,e,ea}] = x = 10^{-1}$$

$$K_c = \frac{[NO]^2 [Cl_2]}{[NOCl]^2} = 1.6x10^{-5} M$$

$$K_c = \frac{\left[2x10^{-2}\right]^2 \left[10^{-2}\right]}{\left[0.5\right]^2} = 1.6x10^{-5} M$$

$$K_c = 1.6x10^{-5} = 1.6x10^{-5} M$$

"A" students work (without solutions manual)

~ 10 problems/night.

Dr. Alanah Fitch Flanner Hall 402 508-3119 afitch@luc.edu

Office Hours Th&F 2-3:30 pm

Module #15: Introduction to Equilibrium Oualitative Predictions For direction of Equilibrium

POINT of ASSUMPTIONS

- Avoid using polynomial equations
- 2. Can do it with small K values
- 3. Assume little change (get rid of an x)
- Must check the assumptions 4.

Multiple Equilibria are not solvable With simple cubic, quadratic equations

Chemists are Lazy!

Chemists are ____

If we don't have to calculate can we make qualitative descriptions of equilibrium?

Le Châtelier's Principle

if a change is imposed on a system at equilibrium, the position of the equilibrium will shift in a direction that tends to reduce that change

Effects of Changes on the System

- 1. Addition of inert gas does not affect the equilibrium position.
- 2. Concentration: The system will shift away from the added component.
- 3. Decreasing the volume shifts the equilibrium toward the side with fewer moles.
- 4. Temperature: *K* will change depending upon the temperature (treat the energy change as a reactant).

LeChatlier Examples

Example: (Inert gas) Suppose we have the reaction initially at equilibrium

$$2SO_{2,g} + O_{2,g} \stackrel{\rightarrow}{\leftarrow} 2SO_{3,g}$$
 $K_{c,1000K} = 2.8x10^2$

What happens when we add some $N_{2,g}$, does Q change?

$$K_{C} = \frac{\left[SO_{3,g,eq}\right]^{2}}{\left[O_{2,g,eq}\right]\left[SO_{2,g,eq}\right]^{2}}$$
 Addition of inert gas does not affect the equilibrium position. Similarly.....

Example: (Effect of Solid)

What is the effect on equilibrium in the calcination (decomposition)

$$CaCO_{3,s} \stackrel{\rightarrow}{\leftarrow} CaO_s + CO_{2,g}$$

of limestone produced by adding a small quantity of CaCO₃(s)?

$$K_{c} = \frac{\left[CO_{2,g}\right]\left[CaO_{s}\right]}{\left[CaCO_{3,s}\right]} = \left[CO_{2,g}\right]$$

Change in quantity of solids do not affect direction of equilibria. So addition of more limestone is irrelevant.

Example What is the effect on equilibrium in the (decomposition)

$$CaCO_{3,s} \stackrel{\rightarrow}{\leftarrow} CaO_s + CO_{2,g}$$

Concentration: The system will shift toward from the removed component.

of removing some CO_{2,g}, does Q change?

$$\left[CO_{2,g,new} \right] < \left[CO_{2,g,eq} \right] \qquad \left[CO_{2,g,new} \right] = \frac{\left[CO_{2,g,eq} \right]}{x} \qquad Q = \frac{\left[CO_{2,g,eq} \right]}{x} < K_c = \left[CO_{2,g,eq} \right]; rx \xrightarrow{right}$$

Example Suppose we have the reaction initially at equilibrium:

$$2SO_{2,g} + O_{2,g} \stackrel{\rightarrow}{\sim} 2SO_{3,g}$$
 $K_{c,1000K} = 2.8x10^2$

What happens when we add some $SO_{3,g}$, does Q change?

$$\begin{bmatrix} SO_{3,new} \end{bmatrix} > \begin{bmatrix} SO_{3,eq} \end{bmatrix}$$

$$\begin{bmatrix} SO_{3,new} \end{bmatrix} = x \begin{bmatrix} SO_{3,eq} \end{bmatrix}$$

$$Q = \frac{\left(x \begin{bmatrix} SO_{3,g,eq} \end{bmatrix}^2}{\begin{bmatrix} O_{2,g,eq} \end{bmatrix} \begin{bmatrix} SO_{2,g,eq} \end{bmatrix}^2} > K_C = \frac{\begin{bmatrix} SO_{3,g,eq} \end{bmatrix}^2}{\begin{bmatrix} O_{2,g,eq} \end{bmatrix} \begin{bmatrix} SO_{2,g,eq} \end{bmatrix}^2}; rx \leftarrow \frac{Left}{Left}$$

Concentration: The system will shift away from the added component.

Decreasing the volume (increasing P) shifts the equilibrium toward the side with fewer moles

$$2SO_{2(g)} + O_{2(g)} \stackrel{\rightarrow}{\leftarrow} 2SO_{3(g)}$$
 $K_c = 280_{1000K}$

Decrease volume, what happens?

Number of moles of reactants? Number of moles of products?

If we form reactants we get 3 moles

If we form products we get 2 moles.

reaction moves to decrease moles

moves to the right.

Effect of Temperature????

Consider effect of raising temperature on two reactions:

$$2SO_{2(g)} + O_{2(g)} \stackrel{\rightarrow}{\leftarrow} 2SO_{3(g)}$$
 $\Delta H^o = -180kJ$

$$N_{2(g)} + O_{2(g)} \stackrel{\rightarrow}{\leftarrow} 2NO_{2(g)}$$
 $\Delta H^o = +181kJ$

What will happen?

Another way to see this is to write the rxs by considering heat As a product or reactant. Reaction shifts away from heat:

$$2SO_{2(g)} + O_{2(g)} \stackrel{\rightarrow}{\leftarrow} 2SO_{3(g)} + heat; rx \stackrel{left}{\longleftarrow}$$

$$N_{2(g)} + O_{2(g)} + heat \stackrel{\rightarrow}{\leftarrow} 2NO_{2(g)}; rx \stackrel{right}{\longrightarrow}$$

Temperature: *K* will change depending upon the temperature (treat the energy change as a reactant).

Do you see a pattern?

$$\ln\left[\frac{K_1}{K_2}\right] = \frac{-\Delta H_{forward rx}}{R} \left[\frac{1}{T_1} - \frac{1}{T_2}\right]$$

Van't Hoff equation (1852-1911)

$$\ln\left[\frac{k_1}{k_2}\right] = \left[\frac{-E_a}{R}\right] \left[\frac{1}{T_1} - \frac{1}{T_2}\right]$$

Arrhenius Equation

$$\ln\left[\frac{P_1}{P_2}\right] = \left[\frac{-\Delta H_{vaporization}}{R}\right] \left[\frac{1}{T_1} - \frac{1}{T_2}\right]$$

Clausius-Clapeyron equation

$$N_{2(g)} + 3H_{2(g)} \stackrel{?}{\rightleftharpoons} 2NH_{3(g)}$$

$$\Delta H^{0} = -92.2kJ \qquad \text{What is K at } 100 \, ^{\circ}\text{C}?$$

$$K = 6x10^{5} \Big|_{25C} \qquad \text{Predict first using LeChatelier's principle: will it get larger or smaller? You try it!, we will compare to calc.}$$

$$N_{2(g)} + 3H_{2(g)} \stackrel{?}{\rightleftharpoons} 2NH_{3(g)} + heat$$

$$\ln \left[\frac{K_{1}}{K_{2}} \right] = \frac{-\Delta H^{\circ}}{R} \left[\frac{1}{T_{1}} - \frac{1}{T_{2}} \right] \qquad e^{\ln \left[\frac{6x10^{5}}{K_{2}} \right]} = \left[\frac{6x10^{5}}{K_{2}} \right] = e^{7.48628} = 1783.405$$

$$\ln \left[\frac{6x10^{5}}{K_{2}} \right] = \frac{-\left(-92.2x10^{3} \frac{J}{mol - K} \right)}{8.31 \frac{J}{mol - K}} \left[\frac{1}{273 + 25K} - \frac{1}{273 + 100K} \right]$$

$$\ln \left[\frac{6x10^{5}}{K_{2}} \right] = \frac{11095.07}{\left(\frac{1}{Kelvin} \right)} \left[\frac{.000675}{Kelvin} \right] = 7.48628 \qquad \boxed{\frac{6x10^{5}}{1783.405}} = K_{2} = 336.435$$

What have we learned?

- 1. Expression for K
- 2. Expression for Q
- 3. Distinguish between initial and final or equilibrium concentrations.
- 4. How to predict direction of a reaction
- 5. How to calculate the equilibrium conc.
- 6. How to make assumptions to ease the calculations.
- 7. How to check the calculations
- 8. How to use Le Chat.... principle to effect of conc., pressure, volume, and temp. on a reaction.

"A" students work (without solutions manual) ~7 problems/night.